

Questions	Q1	Q2	Q3	Q4	Q5	Total
Marks						

Question 1: (8 points)

Question Number	1	2	3	4	5	6	7	8
Answer								

Choose the correct answer, then fill it in the above table:

- 1) The truth value of “ $\forall x \in \mathbb{R}$, if $x^2 \geq 1$, then $x > 0$ ” is:
 - True.
 - False.
- 2) The proposition $\neg(p \vee q) \leftrightarrow (\neg p \wedge \neg q)$ for any propositions p and q is a:
 - Tautology.
 - Contradiction.
 - Contingency

$$(p \rightarrow q) \wedge \neg(p \rightarrow q)$$

- 3) The proposition $(p \rightarrow q) \wedge (p \wedge \neg q)$ is logically equivalent to:
 - T
 - F
 - p
 - q
- 4) The statement $p \rightarrow q$ is equivalent to:
 - $\neg p \rightarrow q$
 - $p \rightarrow \neg q$
 - $\neg q \rightarrow \neg p$
 - $\neg q \rightarrow p$

5) The negation of the statement $[\exists x(x^2 > x)]$ and $[\forall x(x^2 \neq 1)]$ is

- (a) $[\forall x(x^2 \geq x)]$ or $[\exists x(x^2 = 1)]$
- (b) $[\exists x(x^2 > x)]$ or $[\forall x(x^2 = 1)]$
- (c) $[\forall x(x^2 \leq x)]$ or $[\exists x(x^2 = 1)]$**
- (d) $[\exists x(x^2 \leq x)]$ or $[\forall x(x^2 = 1)]$

6) The statement " $x - 3 < 0$ " is true when the domain is the set of:

- (a) All positive real numbers.
- (b) All negative real numbers.**
- (c) All real numbers.
- (d) All real numbers except $x = 3$.

7) Let $P(x, y)$ be the statement: " $y - 1 = x$ ". Then

- (a) $P(2,3)$ is false.
- (b) $P(3,2)$ is true.
- (c) $P(5,4)$ is false**
- (d) $P(4,5)$ is false**

8) Let $p(x)$ be the statement " $x^2 > 11$ " and the universe of discourse consists of the positive integers not exceeding 4, then the truth value of $\exists xP(x)$ is equal to

- (a) $(P(1) \vee P(2)) \wedge (P(3) \wedge P(4))$.
- (b) $P(1) \vee P(2) \vee P(3) \vee P(4)$.**
- (c) $P(1) \wedge P(2) \wedge P(3) \wedge P(4)$.
- (d) $(P(1) \vee P(2)) \vee (P(3) \wedge P(4))$.

Question 2: (3+2.5 points)

(A) Consider the proposition: "If $2 + 6 = 3$ then $\sqrt{2}$ is irrational". Find the following:

(1) The truth value of the proposition. True

(2) The converse and its truth value. $q \rightarrow p$

If $\sqrt{2}$ is irrational then $2 + 6 = 3$

False

(3) The inverse and its truth value. $\neg p \rightarrow \neg q$

If $2 + 6 \neq 3$ then $\sqrt{2}$ is not irrational

False

(4) The contraposition and its truth value.

If $\sqrt{2}$ is not rational then $2 + 6 \neq 3$

True

(B) Without using truth tables show that $(p \wedge q) \rightarrow r \equiv (p \rightarrow r) \vee (q \rightarrow r)$.

$$(p \wedge q) \rightarrow r \equiv \neg(p \wedge q) \vee r$$

$$p \rightarrow q \equiv \neg p \vee q$$

De Morgan's Law

commutativity

$$r \vee r \equiv r$$

commutativity and associativity

$$\equiv \neg p \vee r \vee \neg q$$

$$\equiv \neg p \vee r \vee r \vee \neg q$$

$$\equiv (\neg p \vee r) \vee (\neg q \vee r)$$

$$\equiv (p \rightarrow r) \vee (q \rightarrow r)$$

Question 3: (2.5+2.5 points)

(A) **By contradiction:** Prove that if x is rational and y is irrational then $x + y$ is irrational.

Assume that x is rational and y is irrational but $x + y$ is rational. Then $x = \frac{p}{q}$ and $x + y = \frac{m}{n}$, where $p, q, m, n \in \mathbb{Z}$
 $q \neq 0, n \neq 0$

$$\text{So } y = (x + y) - x = \frac{m}{n} - \frac{p}{q} = \frac{mq - np}{nq}, \quad mq - np, nq \in \mathbb{Z}$$
$$nq \neq 0$$

This mean that y is rational, a contradiction.

(B) Prove that for all integer n , if $n + 1$ is even, then n^2 is odd.

Assume that $n + 1$ is even, then $n + 1 = 2k$ for some $k \in \mathbb{Z}$

then $n = 2k - 1$

$$\text{So } n^2 = (2k - 1)^2 = 4k^2 + 4k + 1$$
$$= 2(2k^2 + 2k) + 1, \quad \text{since } 2k^2 + 2k \in \mathbb{Z}$$

then n^2 is odd.

Question 4: (2.5+1 points)

(A) Prove that for all integer n , if $n^2 + n$ is odd, then n is odd.

By Contraposition:

Assume that n is even

then $n = 2k$ for some $k \in \mathbb{Z}$

and $n^2 = 4k^2$

Hence $n^2 + n = 4k^2 + 2k$

$= 2(2k^2 + k)$, since $2k^2 + k \in \mathbb{Z}$

then $n^2 + n$ is even.

\therefore if $n^2 + n$ is odd then n is odd.

(B) Show that that statement "For every positive integer n , $n^2 + 1 > 2n$ " is false.

$n=1$ is a counterexample as $1^2 + 1 > 2$ is false.

Question 5: (4 points)

The sequence $\{a_n\}$ is defined recursively by

$$a_1 = 1, a_2 = 4, a_n = 2a_{n-1} - a_{n-2}, n \geq 3$$

Use the Principal of Strong Mathematical induction to prove that $a_n = 3n - 2 \forall n \geq 1$.

Let $P(n) \Rightarrow "a_n = 3n - 2"$

Basis step:

$P(1)$

$$\text{L.H.S} = a_1 = 1 \quad \text{R.H.S} = 3(1) - 2 = 1$$

$\therefore P(1)$ is true.

$P(2)$

$$\text{L.H.S} = a_2 = 4, \quad \text{R.H.S} = 3(2) - 2 = 4$$

$\therefore P(2)$ is true.

Inductive step: Assume that $P(j)$ is true $\forall 1 \leq j \leq k$ where k is an integer. (IH)

$$\begin{aligned} a_{k+1} &= 2a_k - a_{k-1} \\ &= 2(3k - 2) - (3(k-1) - 2) \\ &= 6k - 4 - 3k + 3 + 2 \\ &= 3k + 1 \\ &= 3k + 3 - 2 \\ &= 3(k+1) - 2 \end{aligned}$$

$\therefore P(k+1)$ is true

By ①, ② $P(n)$ is true $\forall n \geq 1$.

دعواي لك بال توفيق