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Question Q1 Q2 Q3 Q4 Q5 Total

Grade

Q1. (a) Without using truth tables, show that [(p∧¬q)∨¬p] → r is logically equivalent to
¬r → (p ∧ q). (3)

(b) Use induction to prove the following for every n ≥ 1 :
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(c) Let a, b and c be real numbers. Use contraposition to show that if 2a − c > 7, then
a− b > 1 or c− 2b < −5. (2)

Q2. (a) Let R be the relation on Z+ = {1, 2, 3, . . .} defined by:

xRy ⇔ x− y = 10.

Determine whether R is reflexive, symmetric, antisymmetric or transitive. (4)
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(b) Let E be the relation on Z defined by mEn ⇔ 4 | (m2 − n2).
(i) Prove that E is an equivalence relation. (3)

(ii) Show that [m] = [7m] for every m ∈ Z. (1)

(iii) Show that m+ 1 /∈ [m] for every m ∈ Z. (1)

Q3. (a) Let G be a simple graph with degree sequence x, x, x, x, x, x, 2x, 4x and having 6
edges.

(i) Find x. (1)
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(ii) Show that G cannot be connected. (1)

(iii) Find the number of edges of the complement G of G. (1)

(b) Determine if the following graphs H and I are isomorphic. (2)
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(c) Determine whether the graph I in (b) is bipartite, and if so, then find a bipartite
representation. (2)

Q4.(a) (i) Give an example of a tree T , whose complement T is a tree. (1)

(ii) Give an example of a tree T , whose complement T is not a tree. (1)

(iii) Draw 3 (nonisomorphic) trees with 5 vertices. (2)
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(b) For the graph I in Q3(b), find a spanning tree with root f ,
(i) using depth-first search; (1)

(ii) using breadth-first search. (1)

(c) Using alphabetical order, form a binary search tree for the words:
Lily, Daisy, Rose, Violet, Orchid, Tulip, Lotus. (2)
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Q5. (a) For the Boolean function f(x, y, z) = (x+ yz)(x+ y), find
(i) the complete sum-of-products expansion (CSP); (2)

(ii) the complete product-of-sums expansion (CPS). (2)
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(b) Let g(x, y, z) = xyz + xy z + xyz + x yz + x yz be a Boolean function.
(i) Build the Karnaugh map of g. (1)

(ii) Simplify g (i.e., write it in MSP form). (2)
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