

Final Exam  
Academic Year 1445-1446 Hijri- Second Semester

| معلومات الامتحان Exam Information |                      |                   |
|-----------------------------------|----------------------|-------------------|
| Course name                       | Discrete Mathematics | اسم المقرر        |
| Course Code                       | Math 151             | رمز المقرر        |
| Exam Date                         | 2025-05-26           | تاريخ الامتحان    |
| Exam Time                         | 08: 00 AM            | وقت الامتحان      |
| Exam Duration                     | 3 hours              | مدة الامتحان      |
| Classroom No.                     |                      | رقم قاعة الاختبار |
| Instructor Name                   | د.جوهر المفرج        | اسم استاذ المقرر  |

| معلومات الطالب Student Information |  |                |
|------------------------------------|--|----------------|
| Student's Name                     |  | اسم الطالب     |
| ID number                          |  | الرقم الجامعي  |
| Section No.                        |  | رقم الشعبة     |
| Serial Number                      |  | الرقم التسلسلي |

General Instructions:

- Your Exam consists of 8 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- Calculators are not allowed

٨ صفحه: (بِإِسْتِثْنَاءِ هَذِهِ الورقة)

يُجَبُ إِبْقَاءُ الْهُوَافِتِ وَالسَّاعَاتِ النَّذِكِيَّةِ خَارِجَ قَاعَةِ الْامْتِحَانِ.

لَا يُسْمَحُ بِالْإِلَالَاتِ الْحَاسِبَةِ

هذا الجزء خاص بـاستاذ المادة

*This section is ONLY for instructor*

| # | Course Learning Outcomes (CLOs) | Related Question (s) | Points | Final Score |
|---|---------------------------------|----------------------|--------|-------------|
| 1 | CLO1.2                          | Q2a                  | 4      | 40          |
| 2 | CLO2.1                          | Q1,Q4                | 9+8    |             |
| 3 | CLO2.2                          | Q2b                  | 5      |             |
| 4 | CLO2.3                          | Q3                   | 7      |             |
| 5 | CLO2.4                          | Q5                   | 7      |             |
| 6 |                                 |                      |        |             |
| 7 |                                 |                      |        |             |
| 8 |                                 |                      |        |             |

| Question | Q1 | Q2 | Q3 | Q4 | Q5 | Total |
|----------|----|----|----|----|----|-------|
| Grade    |    |    |    |    |    |       |

**Q1. (a)** Without using truth tables, show that  $[(p \wedge \neg q) \vee \neg p] \rightarrow r$  is logically equivalent to  $\neg r \rightarrow (p \wedge q)$ . (3)

**(b)** Use induction to prove the following for every  $n \geq 1$  :

$$\frac{3}{1^2 \times 2^2} + \frac{5}{2^2 \times 3^2} + \frac{7}{3^2 \times 4^2} + \cdots + \frac{2n+1}{n^2(n+1)^2} = 1 - \frac{1}{(n+1)^2}. \quad (4)$$

**(c)** Let  $a$ ,  $b$  and  $c$  be real numbers. Use contraposition to show that if  $2a - c > 7$ , then  $a - b > 1$  or  $c - 2b < -5$ . (2)

**Q2. (a)** Let  $R$  be the relation on  $\mathbb{Z}^+ = \{1, 2, 3, \dots\}$  defined by:

$$xRy \Leftrightarrow x - y = 10.$$

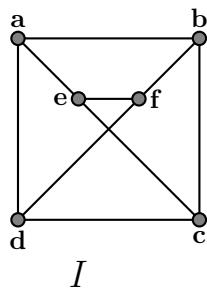
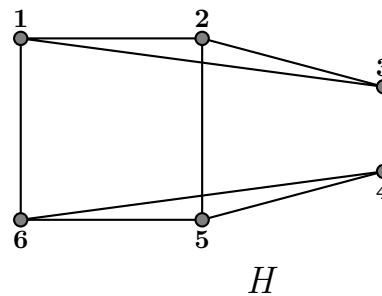
Determine whether  $R$  is reflexive, symmetric, antisymmetric or transitive. (4)

(b) Let  $E$  be the relation on  $\mathbb{Z}$  defined by  $mEn \Leftrightarrow 4 \mid (m^2 - n^2)$ .

(i) Prove that  $E$  is an equivalence relation. (3)

(ii) Show that  $[m] = [7m]$  for every  $m \in \mathbb{Z}$ . (1)

(iii) Show that  $m + 1 \notin [m]$  for every  $m \in \mathbb{Z}$ . (1)



**Q3. (a)** Let  $G$  be a simple graph with degree sequence  $x, x, x, x, x, x, 2x, 4x$  and having 6 edges.

(i) Find  $x$ . (1)

(ii) Show that  $G$  cannot be connected. (1)

(iii) Find the number of edges of the complement  $\overline{G}$  of  $G$ . (1)

**(b)** Determine if the following graphs  $H$  and  $I$  are isomorphic. (2)



**(c)** Determine whether the graph  $I$  in **(b)** is bipartite, and if so, then find a bipartite representation. (2)

**Q4.(a)** (i) Give an example of a tree  $T$ , whose complement  $\bar{T}$  is a tree. (1)

(ii) Give an example of a tree  $T$ , whose complement  $\bar{T}$  is not a tree. (1)

(iii) Draw 3 (nonisomorphic) trees with 5 vertices. (2)

(b) For the graph  $I$  in **Q3(b)**, find a spanning tree with root  $f$ ,

(i) using *depth-first* search; (1)

(ii) using *breadth-first* search. (1)

(c) Using alphabetical order, form a binary search tree for the words:  
*Lily, Daisy, Rose, Violet, Orchid, Tulip, Lotus.* (2)

**Q5. (a)** For the Boolean function  $f(x, y, z) = (x + y\bar{z})(\bar{x} + y)$ , find  
(i) the complete sum-of-products expansion (CSP); (2)

(ii) the complete product-of-sums expansion (CPS). (2)

(b) Let  $g(x, y, z) = xyz + x\bar{y}\bar{z} + x\bar{y}z + \bar{x}y\bar{z} + \bar{x}\bar{y}z$  be a Boolean function.

(i) Build the Karnaugh map of  $g$ . (1)

(ii) Simplify  $g$  (i.e., write it in MSP form). (2)