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Q1. (a) Without using truth tables, show that ¬(p ∧ q) ∧ (p → ¬r) is logically equivalent
to (q ∨ r)→ ¬p. (3 points)

(b) For any integers x and y, prove by contraposition that: if x2(y + 3) is even then x is
even or y is odd. (2 points)
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(c) Use induction to prove that 9 + 13 + 17 + . . . + (4n + 5) = n(2n + 7) for all n ≥ 1. (4
points)
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Q2. (a) Let A be the set of even integers, and let E be the relation on A defined by aEb
if and only if 4 divides a + b.

(i) Show that E is an equivalence relation. (3 points)

(ii) Find [0]. (1 point)

(iii) Is −6 related to 12? (Justify your answer.) (1 point)
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(b) Let P = {(1, 1), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 4)} be a relation on B = {1, 2, 3, 4}.
(i) Show that P is a partial ordering. (3 points)

(ii) Is P a total ordering? (Justify your answer.) (1 point)

(iii) Represent P with a Hasse diagram. (1 point)
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Q3. (a) Let G be a graph with 14 edges and degree sequence a, a, 5, 5, 5, 5.
(i) Find a. (1 point)

(ii) Can G be a complete graph? (Justify your answer.) (1 point)

(b) Let M be a (undirected) graph represented with the following adjacency matrix.

A =


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0



Draw M, and show that it is not a tree. (2 points)
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(c) Determine whether the following graph H is bipartite, and if so, then find a bipartite
representation. (2 points)

p q

ts

r uH

(d) Determine whether the graph H in (c) is isomorphic the graph L below. (Justify your
answer.) (2 points)

1 2

3

4

56

L
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(e) For the graph H below, find a spanning tree with root r,

p q

ts

r uH

(i) using depth-first search; (1 point)

(ii) using breadth-first search. (1 ponit)

(f) Using alphabetical order, form a binary search tree for the words:
Saw, Hammer, Screwdriver, Ax, Pliers, Wrench, Drill. (2 points)
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Q4. (a) Without using tables, prove the following Boolean identity:

(x + y) + z = x z + yz. (2 points)

(b) (i) Find the complete sum-of-products expansion (CSP) for
f(x, y, z) = (xz + y)(x + yz). (2 points)
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(ii) Find the complete product-of-sums expansion (CPS) for
g(x, y, z) = xz + y. (2 points)

(c) Let h(x, y, z) = xyz + xyz + xyz + xyz + x y z + x yz be a Boolean function.
(i) Build the Karnaugh map of h. (1 point)

(ii) Simplify h (i.e., write it in MSP form). (2 points)

Good Luck :)
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