

Final Exam
Academic Year 1445 Hijri- Second Semester

معلومات الامتحان		
Course name	Discrete Mathematics	اسم المقرر
Course Code	151 ريض	رمز المقرر
Exam Date	2024-06-03	تاريخ الامتحان
Exam Time	08: 00 AM	وقت الامتحان
Exam Duration	3 hours	مدة الامتحان
Classroom No.		رقم قاعة الامتحان
Instructor Name		اسم استاذ المقرر

معلومات الطالب

Student's Name		اسم الطالب
ID number		الرقم الجامعي
Section No.		رقم الشعبة
Serial Number		الرقم التسلسلي

General Instructions:

- Your Exam consists of 9 PAGES (except this paper)
 - Keep your mobile and smart watch out of the classroom.
 - Calculators are not allowed.
- عدد صفحات الامتحان 9 صفحة. (بإثناء هذه الورقة) •
 يجب إبقاء الهواتف وال ساعات الذكية خارج قاعة الامتحان. •
 الآلة الحاسبة ممنوعة. •

هذا الجزء خاص بأستاذ المادة

This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	1.1	2a(ii,iii)		
2	1.2	2b(iii), 4b		
3	2.1	1, 3(e,f), 4a		
4	2.2	2a(i), 2b(i,ii)		
5	2.3	3(a to d)		
6	2.4	4c		
7				
8				

Q	1	2ai,ii	2aiii	2bi,ii	2biii	3a-d	3e,f	4a	4b	4c	Total
Grade											

Q1. (a) Without using truth tables, show that $\neg(p \wedge q) \wedge (p \rightarrow \neg r)$ is logically equivalent to $(q \vee r) \rightarrow \neg p$. (3 points)

(b) For any integers x and y , prove by contraposition that: if $x^2(y + 3)$ is even then x is even or y is odd. (2 points)

(c) Use induction to prove that $9 + 13 + 17 + \dots + (4n + 5) = n(2n + 7)$ for all $n \geq 1$. (4 points)

Q2. (a) Let A be the set of **even** integers, and let E be the relation on A defined by aEb if and only if 4 divides $a + b$.

(i) Show that E is an equivalence relation. (3 points)

(ii) Find $[0]$. (1 point)

(iii) Is -6 related to 12 ? (Justify your answer.) (1 point)

(b) Let $P = \{(1, 1), (1, 3), (1, 4), (2, 2), (3, 3), (3, 4), (4, 4)\}$ be a relation on $B = \{1, 2, 3, 4\}$.

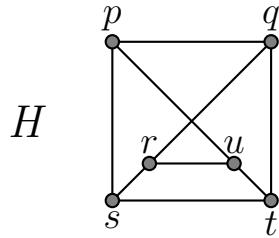
(i) Show that P is a partial ordering. (3 points)

(ii) Is P a total ordering? (Justify your answer.) (1 point)

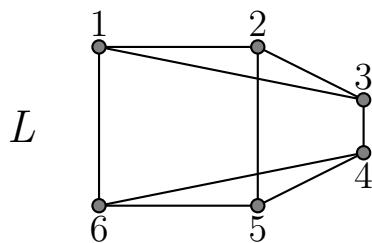
(iii) Represent P with a Hasse diagram. (1 point)

Q3. (a) Let G be a graph with 14 edges and degree sequence $a, a, 5, 5, 5, 5$.

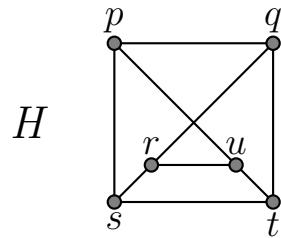
(i) Find a . (1 point)


(ii) Can G be a complete graph? (Justify your answer.) (1 point)

(b) Let M be a (undirected) graph represented with the following adjacency matrix.


$$A = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

Draw M , and show that it is not a tree. (2 points)


(c) Determine whether the following graph H is bipartite, and if so, then find a bipartite representation. (2 points)

(d) Determine whether the graph H in (c) is isomorphic to the graph L below. (Justify your answer.) (2 points)

(e) For the graph H below, find a spanning tree with root r ,

(i) using *depth-first* search; (1 point)

(ii) using *breadth-first* search. (1 point)

(f) Using alphabetical order, form a binary search tree for the words: *Saw, Hammer, Screwdriver, Ax, Pliers, Wrench, Drill*. (2 points)

Q4. (a) Without using tables, prove the following Boolean identity:

$$\overline{\overline{(\bar{x} + y)} + z} = \bar{x} \bar{z} + y \bar{z}. \text{ (2 points)}$$

(b) (i) Find the complete sum-of-products expansion (CSP) for $f(x, y, z) = (x\bar{z} + y)(x + yz)$. (2 points)

(ii) Find the complete product-of-sums expansion (CPS) for
 $g(x, y, z) = \bar{x}z + y$. (2 points)

(c) Let $h(x, y, z) = xyz + xy\bar{z} + x\bar{y}z + \bar{x}yz + \bar{x}\bar{y}\bar{z} + \bar{x}\bar{y}z$ be a Boolean function.

(i) Build the Karnaugh map of h . (1 point)

(ii) Simplify h (i.e., write it in MSP form). (2 points)

Good Luck :)