

College of Science. **Department of Mathematics**

Final Exam Academic Year 1445 Hijri- First Semester

معلومات الامتحان Exam Information									
Course name	Discrete M	Discrete Mathematics							
Course Code	Mat	Math 151							
Exam Date	2023-12-25	تاريخ الامتحان وقت الامتحان							
Exam Time	08: 00	08: 00 AM							
Exam Duration	3 hours	ثلاث ساعات	مدة الامتحان						
Classroom No.			رقم قاعة الاختبار						
Instructor Name			اسم استاذ المقرر						

معلومات الطالب Student Information							
Student's Name		اسم الطالب					
ID number		الرقم الجامعي					
Section No.		رقم الشعبة					
Serial Number		الرقم التسلسلي					

General Instructions:

- Your Exam consists of 9 PAGES (except this paper)
- Keep your mobile and smart watch out of the classroom.
- عدد صفحات الامتحان 9 صفحة. (بإستثناء هذه الورقة) يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.
 - - يمنع استخدام الآلة الحاسبة.

Calculators are not allowed.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	1.1	2a(ii)		
2	1.2	5b		
3	2.1	1, 3(e,f), 4a		
4	2.2	2a(i), 2b		
5	2.3	3(a to d)		
6	2.4	4c		
7				
8				

Question	Grade
1	
2a(i)	
2a(ii)	
2b	
3 (a,b,c,d)	
3 (e,f)	
4a	
4b	
4c	
Total	

Q1. (a) Without using truth tables show that $(\neg p \rightarrow q) \rightarrow p \equiv q \rightarrow p$. (3 points)

(b) Use induction to show that $n^3 + 5n$ is divisible by 3 for all $n \ge 0$. (4 points)

(c) Suppose a and b are integers. Use contraposition to prove that if $a^2 - b^2 = 33$, then a is even or b is even. (3 points)

- **Q2.** (a) Define a relation E on $\mathbb{Z} \{0\}$ as mEn if and only if 3mn > 0.
 - (i) Show that E is an equivalence relation. (3 points)

(ii) Find [1] and [-1]. (2 points)

(b`	Define a	relation	R	on	\mathbb{Z}	as	xRu	if	and	only	if	x^2	>	u^2	:
١	. ~ .		101001011	10	OII		COD	w 1 0.9	11	and	OIII.y	11	••	_	.9	

(i) Determine whether R is reflexive, symmetric, antisymmetric or transitive. (4 points)

(ii) Is R a partial ordering? (Justify your answer.) (1 point)

Q3. (a) Show that an undirected graph with degree sequence 4, 3, 2, 2, 1, x cannot be connected if it has exactly 6 edges. (2 points)

(b) Find the number of vertices n of the complete graph K_n , that has 36 edges. (2 points)

(c) Determine if the graphs G and H below are isomorphic. (Justify your answer.) (2 points)

(d) Is the graph G below bipartite? (Justify your answer.) (1 point)

- (e) For the graph G in (d), find a spanning tree with root a,
 - (i) using depth-first search; (1 point)

(ii) using breadth-first search. (1 point)

(f) Using alphabetical order, form a binary search tree for the words: *Mother, Father, Son, Daughter, Aunt, Uncle, Cousin.* (2 points)

Q4. (a) Prove the following Boolean identity:

$$\overline{x} + xy = \overline{x}\overline{y}$$
. (2 points)

- **(b)** Let $f(x, y, z) = x(\overline{y} + x\overline{z})$ be a Boolean function.
 - (i) Find the complete sum-of-products expansion (CSP) of f. (2 points)

(ii) Find the complete product-of-sums expansion (CPS) of f. (2 points)

(c)	Let	g(x, y)	y,z) =	= xyz	$+x\overline{y}\overline{z}$	$+ \bar{a}$	$\overline{c}y\overline{z}$ -	$\vdash \overline{x}\overline{y}$	$\overline{j}\overline{z}$.	$+ \overline{x} \overline{y}$	$\bar{y}z$ be	a	Boolean	function.	
								,							

(i) Build the Karnaugh map of g. (1 point)

(ii) Simplify g (i.e., write it in MSP form). (2 points)

Good Luck :)