Question I: (8points)

Question 1 2 3

R

Choose the correct answer, then fill in the table above:

Answer \j_) C C

() If p > q s false, then —p v qis

(a) True.
(b) False.

(2) The proposition “ x2 < x whenever 0 < x < 1" is cquivalent to:

(a) x* < ximplies0 < x < 1.

M) x*<x ifandonlyif 0 <x<1.
(c)If0<x<1them x?<x.

(d) None of the previous.

(3) The proposition — 3x: (x> = 1 A 2x = 1) is equivalent to:
(@ 3x:(x®#1v2x+1).

b)vx:(x* 1 A2x £ 1).

©@ve:(x*+1v2x=1).

(d) None of the previous.

(4) The proposition "—[pV —p] - q"isa

S 9
(a) Tautology.

(b) Contradiction.
(c) Contingency.



S truth
(5) The value of the Statement 3! x € R such thatx? — 5 — is:

(a) True.
(b) False.
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(6) The inverse of the proposition if x +y = 2 then 2x + 2y > 27 is:

(a)il‘x+y:ae2then2x+2y52.
M)if Zx+2y>2thenx+y=2.
(©)if2x + 2y < 2 then x+y+2,
(d) None of the previous.

(7) If the domain of the propositional function P(x) consists of the integers 1,2,3 and 4, then the
following is equivalent to the statement -VxP(x):

@) ~P(A)A=P(2) A -P(3) A =P(4).
(b) 2P(1) v=P(2) v =-P(3) V =P(4).
©PQA)vP2)vP(3)VvP(H).

(d) None of the previous.

(8) Let P(x,y) be the statement " y — 2x is odd " then the following is true:

(@) P(1.5).
(b) P(1,2).
' (C) P(3,2)'.
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Question II: (2+2+2=6 points)
A. Without using truth tables prove the following:

ap = (ApAQ) = -p - q.
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B. Prove that: 2" + 1 > n?, for all nonnegative integers n less than 4.
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prove by contradiction: "If m # 0 is rational and n is irrational then mn is irrational".
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Using Strong Induction prove that:

a, = 2" -1, for all nonnegative integers n.
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