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Q1. (a) Without using truth tables, show that —(p A q) A (p = —7) is logically equivalent =

to (g vVr) = —p. (3 points) ,D(M.w}_“m\J \eu v O p2 l
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(b) For any integers x and y, prove by contraposition that: if z?(y + 3) is even then z is
even or y is odd. (2 points)
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(¢) Use inducti
J U ction to
points) I;rove that 9+ 13 + 17 + k(4
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Q2. (a) Let A be the set of even integers, and let E be the relation on A defined by aEb
if and only if 4 divides a + b.
(i) Show that E is an equivalence relation. (3 points)
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(b) Let P = {(1,1),(1,3),(1,4),(2,2),(3, 3),(3,4),(4,4)} be a relation on B = {1,2,3,4}.
(i) Show that P is a partial ordering. (3 points)
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(ii) Is P a total ordering? (Justify your answer.) (1 point)
No p a ¢ é q 3 a V\; % V T

(iii) Represent P with a Hasse diagram. (1 point)
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Q3. (a) Let G be a graph with 14 edges and degree sequence a, a, 5,5, 5, 5.
(i) Find a. (1 point) S Aeq (9
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(ii) Can G be a complete graph? (Justify your answer.) (1 point)
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(b) Let M be a (undirected) graph represented with the following adjacency matrix.
0011
A=(00 11
1100
1100

Draw M, and show that it is not a tree. (2 points)
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(c) Determine whether the following graph 1 s bipartite, and if so, then find o bipartite
representation. (2 poimnis) b
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(d) Determine whether the graph H in (c)

is isomorphic the grz ., be
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(e) For the graph H below. find a spanning tree with rot r

p 9

(i) umng depth-first search; (1 point)

(f) Using alphabetical order, form a bj
, Inary search tree fi :
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Q4. (a) Without using tables, prove the following Boolean identity:

(Z+y) +z=FZ+ yZz. (2 points)
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(b) (i) Find the complete sum-of-products expansion (CSP) for
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(ii) Find the complete product-of-sums expansion (CPS) for
9(z.y,2) = Tz + y. (2 points)
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(c) Let h(z,y, z)

STYz+ Yz + Yz + TYz + 7
(i) Build the

Karnaugh map of k. (L point)
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(ii) Simplify A (i.e., write it in MSP form). (2 points)
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YZ+Zyz be a Boolean function.

Good Luck :)




