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Q1: Prove or disprove the following: 

1- Let x, y ∈ ℤ. Then x and y are of the same parity if and only if x + y is even.   

(4 marks) 

 

2- Let n ∈ ℤ. If 5 ∤ (n2
 + 4), then 5 ∤ (n − 1) and 5 ∤ (n + 1). (4 marks) 

 

 

3- For sets A, B and C, A × (B ∪ C) = (A × B) ∪ (A × C). (4 marks) 

 

4- There is no smallest positive real number. (3 marks) 

 

5- For every odd positive integer n, 3 | (n
2
 − 1). (2 marks) 

 

6- If 3 is an even number, then 3
2
=9. (1 mark) 

 

7- A sequence {an} is defined recursively by 

a1 = 1, a2 = 3 and an = 2an−1 − an−2 for n ≥ 3. 

Then an = 2n − 1 for all n ∈ ℕ. (4 marks) 

 

8- For each positive integer n, let P(n) be a statement. If 

(1) P(1) is true and 

(2) the implication: P(k) ⇒ P(k + 1), is true for every positive integer k, 

then P(n) is true for every positive integer n. (3 marks) 
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Answers 
 

Q1: 

1- First, assume that x and y are of the same parity. We consider two cases. 

Case 1. x and y are even. Then x = 2a and y = 2b for some integers a 

and b. So, x + y = 2a + 2b = 2(a + b). Since a + b ∈ ℤ, the integer x + y 

is even. 

Case 2. x and y are odd. Then x = 2a + 1 and y = 2b + 1, where a, b ∈ 

ℤ. Therefore, x + y = (2a + 1) + (2b + 1) = 2a + 2b + 2 = 2(a + b + 1). 

Since a + b + 1 is an integer, x + y is even. 

For the converse, assume that x and y are of opposite parity. Without 

loss of generality, assume that x is even and y is odd. Then x = 2a and y 

= 2b + 1, where a, b ∈ ℤ. Then x + y = 2a + (2b + 1) = 2(a + b) + 1. 

Since a + b ∈ ℤ, the integer x + y is odd. 

  

2- We will use the contrapositive proof.  

Assume that 5 | (n − 1) or 5 | (n + 1). We consider these two cases. 

Case 1. 5 | (n − 1). Then n − 1 = 5a for some integer a. So, n = 5a + 1. 

Hence, n
2
 + 4 = (5a + 1)

2
 + 4 = (25a

2
 + 10a + 1) + 4 = 5(5a

2
 + 2a + 1). 

Since 5a
2
 + 2a + 1 ∈ ℤ, it follows that 5 | (n

2
 + 4). 

Case 2. 5 | (n + 1). Then n + 1 = 5b, where b ∈ ℤ, and so n = 5b − 1. 

Hence, n
2
 + 4 = (5b − 1)

2
 + 4 = (25b

2
 − 10b + 1) + 4 = 5(5b

2
 − 2b + 1). 

Since 5b
2
 − 2b + 1 ∈ ℤ, it follows that 5 | (n

2
 + 4). 

 

3- We first show that A × (B ∪ C) ⊆ (A × B) ∪ (A ×C). 

 Let (x, y) ∈ A × (B ∪ C). Then x ∈ A and y ∈ B ∪ C.  



Thus, y ∈ B or y ∈ C, say the former. Then (x, y) ∈ A × B and so (x, y) ∈ 

(A × B) ∪ (A ×C). Consequently, A × (B ∪ C) ⊆ (A × B) ∪ (A ×C). 

Next, we show that (A × B) ∪ (A ×C) ⊆ A × (B ∪ C).  

Let (x, y) ∈ (A × B) ∪ (A ×C). Then (x, y) ∈ A × B or (x, y) ∈ A ×C, say 

the former. Then x ∈ A and y ∈ B ⊆ B ∪ C. Hence, (x, y) ∈ A × (B ∪ C), 

implying that (A × B) ∪ (A ×C) ⊆ A × (B ∪ C). 

 

4- Assume, to the contrary, that there is a smallest positive real number, 

say r. Since 0 < r/2 < r, it follows that r/2 is a positive real number that 

is smaller than r. This, however, is a contradiction. 

 

5- Since 3 ∤ 8, so 3 ∤ (32
 – 1). It follows that n = 3 is a counterexample. 

 

6- Since 3 is an odd number, so (3 is even) is a false statement and the 

implication is true. 

 

7- We proceed by induction. Since a1 = 2 · 1 − 1 = 1 and a2 = 2 · 2 − 1 = 3, 

the formula holds for n = 1 and n = 2. Assume for an arbitrary positive 

integer k that ai = 2i − 1 for all integers i with 1 ≤ i ≤ k. We show that 

ak+1 = 2(k + 1) − 1 = 2k + 1. Since a2 = 3, it follows that ak+1 = 2k + 1 

when k = 1. Hence, we may assume that k ≥ 2. Since k + 1 ≥ 3, it 

follows that ak+1 = 2ak − ak−1 = 2(2k − 1) − (2k − 3) = 2k + 1, which is 

the desired result. By the Strong Principle of Mathematical Induction, 

an = 2n − 1 for all n ∈ ℕ. 

 

8- Assume, to the contrary, that the theorem is false. Then conditions (1) 

and (2) are satisfied but there exist some positive integers n for which 

P(n) is a false statement. Let S = {n ∈ ℕ : P(n) is false}. Since S is a 

nonempty subset of ℕ, it follows by the Well-Ordering Principle that S 

contains a least element s. Since P(1) is true, 1S. Thus, s ≥ 2 and 



s−1∈ℕ. Therefore, s−1S and so P(s−1) is a true statement. By 

condition (2), P(s) is also true and so sS. This, however, contradicts 

our assumption that s ∈ S. 


