

First semester

(1st Oct. 2025)-(9/4/1447)

Without calculators

First exam

131 Math

Time: 90 minutes

King Saud University

College of Science

Mathematics Department

Name:

University Number:

Q₁: Using symbols, definitions and theorems that you have studied, fill in the blanks, where U is the universal set: (12 marks)

- 1- $\sim(\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + 1 < y) \equiv \dots \dots$
- 2- $\overline{A} = \{\dots | \dots \dots\}$ and $A \cup B = \{\dots | \dots \dots\}$
- 3- A compound statement S is called a **tautology** if
- 4- $\sim(A \vee (\sim B)) \equiv \dots \dots$
- 5- If $A=\{1,2\}$ and $B=\{3\}$, then $A \times B = \dots \dots$ and the power set $p(A) = \dots \dots$
- 6- If A and B are disjoint sets such that $|A \cup B|=5$ and $|A-B|=2$, then $|B|= \dots$, $|A \cap B|= \dots$, $|A \times B|= \dots$ and $|p(A)|= \dots$

Q₂: Answer the following questions:

- 1- Use the truth table to show that $A \wedge (B \wedge C) \equiv (A \wedge B) \wedge (A \wedge C)$
(4 marks)
- 2- Show that if $3x^4+1$ is even then $5x+2$ is odd. (4 marks)
- 3- Show that $P = \{\mathbb{Z}^+, \mathbb{Z}^-, \{0\}\}$ is a partition of the set of integer numbers. (3 marks)
- 4- Evaluate the proposed proof of the following result: "If x and y are positive odd numbers, then x+y is even".
Proof: take the odd numbers $x=1$ and $y=3$. Observe that $x+y=1+3=4$ which is an even number. (2 marks)

Answers

Q₁:

1- $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x + 1 \geq y$

2- $\bar{A} = \{x | x \in U \text{ and } x \notin A\}$

$A \cup B = \{x | x \in A \text{ or } x \in B\}$

3-

if it is true for all possible combinations of truth values of the component statements that comprise S .

4- $\sim(A \vee (\sim B)) \equiv (\sim A) \wedge B$

5- $A \times B = \{(1,3), (2,3)\}$ and $p(A) = \{\emptyset, \{1\}, \{2\}, A\}$

6- $|B|=3, |A \cap B|=0, |A \times B|=6, |p(A)|=2^2=4$

Q₂:

1-

A	B	C	$A \wedge B$	$A \wedge C$	$B \wedge C$	$A \wedge (B \wedge C)$	$(A \wedge B) \wedge (A \wedge C)$
T	T	T	T	T	T	T	T
T	T	F	T	F	F	F	F
T	F	T	F	T	F	F	F
T	F	F	F	F	F	F	F
F	T	T	F	F	T	F	F
F	T	F	F	F	F	F	F
F	F	T	F	F	F	F	F
F	F	F	F	F	F	F	F

From the 7th and 8th columns, it is clear that they are logically equivalent.

2- The proof consists of two steps:

Step 1: If $3x^4 + 1$ is even, then x is odd using the proof by contrapositive. So, suppose that x is even. That implies that $x = 2k$ for some integer k . Then we have that:

$$3x^4+1=3(2k)^4+1=3(2)^4k^4+1=48k^4+1=2(24k^4)+1$$

Since $24k^4$ is an integer, $3x^4+1$ is odd. So, we proved that if x is even, then $3x^4+1$ is odd. The contrapositive of this statement is: if $3x^4+1$ is even, then x is odd.

Step 2: If x is odd, then $5x+2$ is odd. We will use the direct proof.

Since x is odd, we have that $x=2k+1$ for some integer k . So,

$$5x+2=5(2k+1)+2=10k+7=10k+6+1=2(5k+3)+1$$

Since $5k+3$ is an integer, $5x+2$ is odd.

- 3- Each element in P is nonempty, the intersection of every two different elements in P is empty and the union of the three elements in P is \mathbb{Z} .
- 4- The proof is incorrect since it took specific numbers to prove the result while it should be taken arbitrary odd numbers (not necessary x is different from y).