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Q1: (8 marks) 

(i) Show that 𝑃 ⇒ 𝑄 ≡ (~𝑃) ∨ 𝑄       (2 marks) 

(~𝑃) ∨ 𝑄 𝑃 ⇒ 𝑄 ~𝑃 𝑄 P 

T T F T T 

F F F F T 

T T T T F 

T T T F F 

 

(ii) ~(∀𝜖 > 0, ∃𝛿 > 0, ∀𝑥 ∈ 𝐷, |𝑥 − 1| < 𝛿 ⇒ |𝑓(𝑥) − 3| < 𝜖) (2 marks) 

≡ ∃𝜖 > 0, ∀𝛿 > 0, ∃𝑥 ∈ 𝐷, ~(|𝑥 − 1| < 𝛿 ⇒ |𝑓(𝑥) − 3| < 𝜖) 

≡ ∃𝜖 > 0, ∀𝛿 > 0, ∃𝑥 ∈ 𝐷, |𝑥 − 1| < 𝛿 ∧ |𝑓(𝑥) − 3| ≥ 𝜖 

(iii) If 𝐴, 𝐵 ⊆ 𝛺 such that |Ω|=10, |A|=5, |B|=4 and |A∪B|=8, then |𝐴 ∩ 𝐵|=1, 

|𝐴 ∩ 𝐵̅̅ ̅̅ ̅̅ ̅|=9, |A−B|=4 and |𝑃(B)|=2
4
=16      (2 marks) 

(iv) Give an example of a relation on A={1,2,3}that is symmetric and 

transitive but NOT reflexive.       (1 mark) 

R={(1,1)}. 

(v) Give an example of two sets, the first one is countably infinite and the 

second one is uncountable.        (1 mark) 

ℕ is countably infinite (denumerable) 

ℝ is uncountable. 

Q2:  (11 Marks) 

Answer the following questions: 
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1- Show that 5n
2
+3n+1 is odd for all integer n.    (3 marks) 

We have the following two theorems for all integers x and y: 

"x and y are of the same parity if and only if x + y is even". 

"xy is even if and only if x is even or y is even". 

Case 1: If n is even, then 5n
2
 and 3n are even using the second 

theorem. Thus, 5n
2
+3n is even using the first theorem. Since 1 is odd, 

the first theorem implies 5n
2
+3n+1 is odd. 

Case 2: If n is odd, then n
2
 is odd and hence 5n

2
 and 3n are odd using 

the second theorem. Thus, 5n
2
+3n is even using the first theorem. 

Since 1 is odd, the first theorem implies 5n
2
+3n+1 is odd. 

2- Evaluate the proposed proof of the following result: "If x and y are 

even numbers, then 𝑥 + 𝑦 is even". 

Proof: Take the even numbers 𝑥 = 2𝑘 and 𝑦 = 2𝑘 for some integer k. 

Observe that 𝑥 + 𝑦 = 2𝑘 + 2𝑘 = 4𝑘 = 2(2𝑘). Since 2k is an integer, 

so 𝑥 + 𝑦 is even.        (2 marks) 

The proof is false since it took 𝑥 = 𝑦 = 2𝑘 while it should be taken 

arbitrary even numbers (not necessary x equals y). 

3- Define a relation R on ℤ as follows: xRy if and only if 𝑥 + 𝑦 is even. 

Show that R is an equivalence relation and find [1].   (4 marks)  

We need the following theorem for all integers x and y: 

"x and y are of the same parity if and only if x + y is even". 

Since x and x have the same parity, 𝑥 + 𝑥 is even and hence xRx for all 

integers x and R is reflexive. 

If xRy, 𝑥 + 𝑦 is even. But the addition is commutative on ℤ. So, 𝑦 + 𝑥 

is even. Therefore, yRx and R is symmetric. 

Now, if xRy and yRz, then 𝑥 + 𝑦 and 𝑦 + 𝑧 are even. Using the above 

theorem, x and y are of the same parity, and y and z are of the same 

parity. Thus, x and z are of the same parity and hence 𝑥 + 𝑧 is even. 

Therefore, xRz and R is transitive. 



Since R is reflexive, symmetric and transitive, it is an equivalence 

relation and using the above theorem, we have that  

[1] = {𝑥 ∈ ℤ|𝑥𝑅1} = {𝑥 ∈ ℤ|𝑥 + 1 𝑖𝑠 𝑒𝑣𝑒𝑛} = {𝑥 ∈ ℤ|𝑥 𝑖𝑠 𝑜𝑑𝑑} 

 

4- Is 𝑃 = {(−∞, −1), [−1,1], (1, ∞)} a partition of the set of real 

numbers? Explain your answer.      (2 marks) 

Yes, since each subset is nonempty, the intersection of each two 

different subsets is empty and the union of the three subsets is ℝ. 

Q3: (6 marks) 

Let 𝑓: ℝ → ℝ such that 𝑓(x)=2x. 

(i) Show that 𝑓 is a function.      (2 marks) 

If 𝑥, 𝑦 ∈ ℝ such that 𝑥 = 𝑦, then 2𝑥 = 2𝑦 and hence 𝑓(𝑥) = 𝑓(𝑦). 

So, 𝑓 is a function. 

(ii) Show that 𝑓−1 is a function.      (3 marks) 

We have the following theorem: 

"Let 𝑓: A → B be a function. Then the inverse relation 𝑓−1 is a 

function from B to A if and only if 𝑓 is bijective. Furthermore, if 𝑓 

is bijective, then 𝑓−1  is also bijective".  

So, we need to show that 𝑓 is bijective. 

If 𝑥, 𝑦 ∈ ℝ such that 𝑓(y) = f(x), then 2y = 2x which implies that 

y = x and 𝑓 is one-to-one. Now, for all 𝑦 ∈ ℝ take 𝑥 = 1

2
𝑦. Then 

𝑥 ∈ ℝ and f(x) = 𝑓(1

2
𝑦) = 2(1

2
𝑦) = 𝑦 and 𝑓 is onto. 

Since 𝑓 is 1-1 and onto, it is bijective and hence 𝑓−1 is a function, 

using the above theorem. 

(iii) Find 𝑓({1,2}) and 𝑓−1(0).      (1 mark) 

𝑓(1) = 2, 𝑓(2) = 4 and hence 𝑓({1,2}) = {2,4}. 

𝑦 = 𝑓(𝑥) = 2𝑥 implies 𝑓−1(𝑦) = 𝑥 = 1

2
𝑦. So, 𝑓−1(0) = 0. 

 



Q4: (5 marks) 

Prove the following, using the formal definition of the limit (𝜖, 𝛿 𝑜𝑟 𝜖, 𝑁) 

(i) 
1lim 0
n

n
                                                                     (2 marks)  

We need to show that: 

∀𝜖 > 0, ∃𝑁 ∈ ℕ, ∀𝑛 ∈ ℕ, 𝑛 > 𝑁 ⟹ |1

𝑛
− 0| < 𝜖. Let 𝜖 > 0 be 

given. Observe that |1

𝑛
− 0| < 𝜖 ⟹ 1

𝑛
< 𝜖. So, 1

𝜖
< 𝑛. So, choose 

𝑁 = ⌈1

𝜖
⌉. Then if 𝑛 ∈ ℕ and 𝑛 > 𝑁, then |1

𝑛
− 0| < 𝜖. Hence, 

lim𝑛→∞
1

𝑛
= 0. 

  

(ii) 
2

2
lim 4
x

x


 .        (3 marks) 

We need to show that: 

∀𝜖 > 0, ∃𝛿 > 0, ∀𝑥 ∈ ℝ, 0 < |𝑥 − 2| < 𝛿 ⇒ |𝑥2 − 4| < 𝜖 

Let 𝜖 > 0 be given. Observe that |𝑥2 − 4| < 𝜖 ⟹ |x − 2||x +

2| < 𝜖 (*). Now, suppose that 𝛿 ≤ 1. So, |x − 2| < 𝛿 ≤ 1 and 

then −1 < x − 2 < 1. This implies that 1 < x < 3 and hence 

3 < x + 2 < 5. Thus, |𝑥 + 2| < 5. So, |x − 2||x + 2| <

5|𝑥 − 2| < 5𝛿. Using (*), we need 5𝛿 = 𝜖 or 𝛿 = 𝜖

5
. But we 

have taken 𝛿 ≤ 1 before. Thus, choose 𝛿 = min {1, 𝜖

5
} and hence 

𝛿 ≤ 𝜖

5
. Therefore, ∀𝑥 ∈ ℝ, if 0 < |𝑥 − 2| < 𝛿 ≤ 𝜖

5
, then: 

|𝑥2 − 4| = |x − 2||x + 2| < (
𝜖

5
) (5) = 𝜖 

So, we could find a suitable 𝛿 for the given (arbitrary) 𝜖.  

Q5: (10 marks) 

(i)  For a, b ∈ ℝ − {−2}, define: a ∗ b = ab + 2a + 2b + 2, where 

the operations indicated in ab + 2a + 2b + 2 are ordinary 

addition and multiplication in ℝ. Show that ∗ is a binary 

operation on ℝ − {−2}.      (2 marks) 



The aim is: if a, b ∈ ℝ − {−2}, then a ∗ b ∈ ℝ − {−2}. Assume, 

to the contrary, that there exists some pair x, y ∈ ℝ − {−2} such 

that x ∗ y ∉ ℝ − {−2}. Thus, x ∗ y = xy + 2x + 2y + 2 = −2. This 

equation is equivalent to (x + 2)(y + 2) = 0, so either x = −2 or y 

= −2, which is impossible since x, y ∈ ℝ − {−2}. Hence, ∗ is a 

binary operation on ℝ − {−2}. 

(ii) Let G = {(𝑥, 0)|𝑥 ∈ ℝ}. For (𝑥, 0), (𝑦, 0)∈G, define: 

 (𝑥, 0) ∗ (𝑦, 0) = (𝑥 + 𝑦, 0) (where 𝑥 + 𝑦 is the ordinary 

addition in ℝ). Show that (G,∗) is an abelian group.  (4 marks) 

1- Since (𝑥, 0) ∗ (𝑦, 0) = (𝑥 + 𝑦, 0) ∈G, So ∗ is a binary 

operation on G. 

2- Associativity: For all real numbers x, y and z, and using the 

definition of ∗ and the associativity of real numbers, we have 

that: 

[(𝑥, 0) ∗ (𝑦, 0)] ∗ (𝑧, 0) = (𝑥 + 𝑦, 0) ∗ (z, 0)

= ([x + y] + z, 0) = (x + [y + z], 0)

= (x, 0) ∗ (y + z, 0) = (x, 0) ∗ [(y, 0) ∗ (z, 0)] 

3- (0,0) is the identity since for a real number x, we have that: 

(0,0) ∗ (𝑥, 0) = (0 + 𝑥, 0) = (𝑥, 0) = (𝑥 + 0,0)

= (𝑥, 0) ∗ (0,0) 

4- For each (𝑥, 0) ∈G, ∃(−𝑥, 0) ∈G Such that: 

(𝑥, 0) ∗ (−𝑥, 0) = (𝑥 + (−𝑥), 0) = (0,0) 

In the same way, we can show that (−𝑥, 0) ∗ (𝑥, 0) = (0,0) 

So, (−𝑥, 0) is the inverse of (𝑥, 0) and (𝑥, 0)−1 = (−𝑥, 0). 

5- Commutativity: For all real numbers x and y, and using the 

definition of ∗ and the commutativity of real numbers, we 

have that: 

(𝑥, 0) ∗ (𝑦, 0) = (𝑥 + 𝑦, 0) = (𝑦 + 𝑥, 0) = (𝑦, 0) ∗ (𝑥, 0) 

1 to 5 imply that (G,∗) is an abelian group. 



(iii) Let (R,+,∙) be a ring. Show that a(0)=0 for all a∈R.  (2 marks) 

Using the property of the additive identity and the right 

distributive law, observe that 

a(0) = a(0 + 0) = a(0) + a(0). 

Adding −a(0) to both sides, we get that 

0=−a(0)+a(0)= −a(0)+[a(0)+a(0)] 

=[−a(0)+a(0)]+a(0)=0+ a(0)=a(0) 

Using the additive inverse property and the associativity. 

(iv) Prove that the set of even integers E and the set of integers ℤ 

have the same cardinality.      (2 marks) 

 

Define 𝑓: ℤ → 𝐸 by 𝑓(𝑥) = 2𝑥 for all integers x. If 𝑥, 𝑦 ∈ ℤ such 

that 𝑓(y) = f(x), then 2y = 2x which implies that y = x and 𝑓 is 

one-to-one. Now, If 𝑦 ∈ 𝐸, then 𝑦 = 2𝑚 for some integer m. Take 

𝑥 = 𝑚. Then 𝑥 ∈ ℤ and f(x) = 𝑓(𝑚) = 2𝑚 = 𝑦 and 𝑓 is onto. 

Since 𝑓 is 1-1 and onto, it is bijective and hence E and ℤ have 

the same cardinality. 

 

 

 


