

College of Science. **Department of Mathematics**

First Midterm Exam Academic Year 1443-1444 Hijri- First Semester

معلومات الامتحان Exam Information						
Course name	Integral Calculus			اسم المقرر		
Course Code	111 ريض Math111			رمز المقرر		
Exam Date	2023-10-04 1445-03-19		تاريخ الامتحان			
Exam Time	03: 00 PM			وقت الامتحان		
Exam Duration	2 hours		ساعتان	مدة الامتحان		
Classroom No.				رقم قاعة الاختبار		
Instructor Name	حنان العو هلي			اسم استاذ المقرر		

معلومات الطالب Student Information			
Student's Name		اسم الطالب	
ID number		الرقم الجامعي	
Section No.		رقم الشعبة	
Serial Number		الرقم التسلسلي	

General Instructions:

- Your Exam consists of 6 (except this paper)
- تعليمات عامة:

 عدد صفحات الامتحان 6 صفحة. (بإستثناء هذه
- Keep your mobile and smart watch out of the classroom.
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	CLO 2.1	QV	4	
2	CLO 2.2	QI+QII+QIV	5+5+3	
3	CLO 2.4	QIII	8	
4				
5				
6				
7				
8				

<u>Question</u>	Mark
Question I	
Question II	
Question III	
Question IV	
Question V	
Total	

Question I: (5 points)

Question Number	1	2	3	4	5
Answer					

A. Choose the correct answer, then fill in the table above:

- (1) If $f(x) = 4x^3 + \cos x$, then the most general antiderivative of f is

(b) $12x^4 + \sin x + C$

(a) $x^4 + \sin x + C$ (c) $12x^2 + \sec x + C$

- (d) None of the previous
- (2) If $\int_1^3 f(x)dx = 5$, $\int_3^1 g(x)dx = 2$, then $\int_1^3 [3f(x) + g(x)]dx = 6$
- (a)3

(b) 17

- (c) 13
- (d) None of the previous

- (3) $\sum_{k=1}^{5} (k \alpha) = 7$, then the value of α is
- (a) $\frac{22}{5}$

- $(b)^{\frac{8}{5}}$
- (c) $\frac{12}{5}$

(d) None of the previous

- (4) If $F(x) = \int_1^{3x^2+1} \tan t \, dt$, then F'(x) =
- (a) $\tan(3x^2 + 1)$

(b) $6x \sec^2(3x^2 + 1)$

 $(c) 6x \tan(3x^2 + 1)$

(d) None of the previous

- $(5) \int D_x [x^5 \sin^3 x] dx =$
- (a) $\frac{1}{6}x^6 \cos^3 x + C$

 $(b)x^5 \sin^3 x$

(c) $x^5 \sin^3 x + C$

(d) None of the previous

Question II: (2+3 points)

A. Without solving the integral prove that

$$\int_0^2 (x^2 + 5) dx \le \int_0^2 (x + 7) dx.$$

B. Find the value of z that satisfies the conclusion of the Integral Mean Value Theorem for $f(x) = x^3$ on [2,4].

Question III: (4+4 points)

A. Sketch the region R bounded by the graphs of the functions $y = x^2$, $y = 8 - x^2$ and then **find its area.**

B. Let R be the region bounded by the graphs of $y = \sqrt{x}$, y = 3 and y-axis. Sketch the region R and set up the integral for the volume of the solid resulting by revolving R about

(i) The x-axis.

(ii) The y-axis.

Question IV: (3 points)

Find the area under the curve $f(x) = 3x^2 + 1$ on [0,4], by taking the limit of the Riemann sum and the right-handed endpoints.

Question V: (4 points)

Evaluate the following integrals:

(i)
$$\int_1^3 |x-2| \ dx$$

(ii)
$$\int \frac{\left(\sqrt{x}+3\right)^4}{\sqrt{x}} dx$$

Good Luck☺