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Question 1: (3+2+2) ‘

1. Find the value of ¢ that satisﬁes the Mean Value Theorem for definite integrals
Z" for the function f(x) = \,_1 on the interval [3,8].
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Question 2: (243+2+3+3+2)

Evaluate the following integrals:
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. f\(\/}'—l) sec (Vx—Invx) dx
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6. [tan3x sec?®x dx
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question 3: (2+2+3+34242+4)
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5. Sketch the region bounded by the graphs of the curves y = x%,y =+/x .Then
find its area.
find its area
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4. Sketch the region bounded by the graphs of the curves y = x?%, y = x + 2.

Then find the volume of the solid generated by revolving this region about the
X — axis.
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5. Find the arc length of y =Ex\/— from x = Otox = L
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6. Convert the polar equation r = cosf + secf into a Cartesian equation.
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;. Sketch the common region between the curves ¥ = 2 and r = 2 + 2 cos6.
Then find its area.
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