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Final Exam - Allowed time: 3 hours
Calculators are not permitted

Q1.

(a) Let A =

 1 0 1
1 1 1
−1 1 0

 and B =

2 −1 3
1 2 4
5 0 1

. Compute, if possible,[3]

2A + (3B)t and BA.

(b) Compute the determinant

∣∣∣∣∣∣
0 1 2
1 0 1
2 1 0

∣∣∣∣∣∣.[2]

(c) Solve by using Gauss-Jordan Elimination Method the linear system[4] 
x + y + 2z = 0
2x + y − z = 3
x− y − 3z = 1

Q2.

(a) Find the standard equation of the ellipse with foci (5,−2) and (−1,−2)[4]
and one of its vertices (7,−2) and sketch it.

(b) Find the elements of the conic section of equation 4y2−8y+16x+20 = 0[4]
and then sketch it.

Q3.

(a) Compute the integrals:[2,3,3]

(i)

∫
6x

(x2 + 5)4
dx, (ii)

∫
1

x2
ln
(
x2 + 1

)
dx, (iii)

∫
2x + 3

(x + 1)2
dx.

(b) Sketch the region bounded by the curves y = 4−x2 and y = x+ 2, and[3]
compute its area.

(c) The region bounded by the curves y = 2− x2 and y = 2− x is rotated[4]
about the y−axis to form a solid S. Find the volume of S.

Q4.

(a) The function y = f(x) is defined implicitly by the equation[4]

y4 − xy2 − e−3x = 0.

Compute the derivative dy
dx

. Evaluate dy
dx

(0) knowing that y(0) = 1.

(b) Solve the differential equation: xy′ + y = 3x2.[4]
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