King Saud University: Mathematics Department Math-254 Third Semester Maximum Marks $=30$

 1444 H

 1444 H

 Solution of Midterm Exam.

 Solution of Midterm Exam. Time: 120 mins.

 Time: 120 mins.}

Question 1: Show that the one of the possible rearrangement of the nonlinear equation $e^{x}-x^{2}=2-3 x$, which has a root in the interval $[0,0.6]$ is

$$
x=g(x)=\frac{2-e^{x}+x^{2}}{3} .
$$

Show that $g(x)$ has a unique fixed-point in $[0,0.6]$. Determine the number of iterations needed to get an approximation with accuracy 10^{-5} to the solution of

$$
x_{n+1}=g\left(x_{n}\right)=\frac{2-e_{n}^{x}+x_{n}^{2}}{3} ; \quad n \geq 0,
$$

lying in the interval $[0,0.6]$ by using the fixed-point iteration method and $x_{0}=0.5$. [6 Marks]

Solution. Since $f(x)=e^{x}-x^{2}+3 x-2$, we observe that $f(0) f(0.6)=(-1.0000)(1.2621)<0$, then the solution we seek is in the interval $[0,0.6]$. Given $g(x)=\frac{2-e^{x}+x^{2}}{3}$ is continuous in [0,0.6] and

$$
g(0)=\frac{2-e^{0}+0}{3}=0.3333 \quad \text { and } \quad g(0.6)=\frac{2-e^{0.6}+(0.6)^{2}}{3}=0.1793 .
$$

Also, g is decreasing function of x, and both lie in the interval $[0,0.6]$. Thus $g(x) \in[0,0.6]$, for all $x \in[0,0.6]$. Also, we have $g^{\prime}(x)=\frac{-e^{x}+2 x}{3}$ continuous in $(0,0.6)$ and

$$
g^{\prime}(0)=\frac{-e^{0}+2(0)}{3}=-0.3333 \quad \text { and } \quad g^{\prime}(0.6)=\frac{-e^{0.6}+2(0.6)}{3}=-0.2074 .
$$

Also, g^{\prime} is decreasing function of x, and both lie in the interval $(0,0.6)$. Thus $\left|g^{\prime}(x)\right|<1$, for all x in the given interval $(0,0.6)$, so from fixed-point theorem the $\mathrm{g}(\mathrm{x})$ has a unique fixed-point. Using the given initial approximation $x_{0}=0.5$, we have the first approximation as

$$
x_{1}=g\left(x_{0}\right)=\frac{2-e^{x_{0}}+x_{0}^{2}}{3}=\frac{2-e^{0.5}+(0.5)^{2}}{3}=0.2004 .
$$

Since $a=0$ and $b=0.6$, then the value of k can be found as follows

$$
k_{1}=\left|g^{\prime}(0)\right|=0.3333 \quad \text { and } \quad k_{2}=\mid g^{\prime}(0.6 \mid=0.2074,
$$

which give $k=\max \left\{k_{1}, k_{2}\right\}=0.3333$. Thus using the error bound formula,

$$
\left|\alpha-x_{n}\right| \leq \frac{k^{n}}{1-k}\left|x_{1}-x_{0}\right|, \quad \text { for all } \quad n \geq 1,
$$

and given

$$
\left|\alpha-x_{n}\right| \leq 10^{-5}, \quad \text { so we have } \frac{k^{n}}{1-k}\left|x_{1}-x_{0}\right| \leq 10^{-5}
$$

$$
\frac{(0.3333)^{n}}{1-0.3333}|0.2004-0.5| \leq 10^{-5}, \quad n \ln (0.3333) \leq \ln \left(2.2252 \times 10^{-5}\right), \quad \text { gives, } \quad n \geq 9.7506
$$

So we need ten (10) approximations to get the desired accuracy for the given problem.

Question 2: Show that the rate of convergence of Newton's method at the root $\alpha=1$ of the equation $(x-1)^{2} \sin x=0$ is linear. Use quadratic convergence method to find x_{2} using $x_{0}=1.5$. Compute the relative error.
[6 Marks]

Solution. Since

$$
f(x)=(x-1)^{2} \sin x \quad \text { and } \quad f^{\prime}(x)=2(x-1) \sin x+(x-1)^{2} \cos x
$$

and $f^{\prime}(1)=0$, gives that $\alpha=1$ is the multiple root. Using Newton's iterative formula, we get
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\left(\left(x_{n}-1\right)^{2} \sin x_{n}\right)}{\left(2\left(x_{n}-1\right) \sin x_{n}+\left(x_{n}-1\right)^{2} \cos x_{n}\right)}=x_{n}-\frac{\left(\left(x_{n}-1\right) \sin x_{n}\right)}{\left(2 \sin x_{n}+\left(x_{n}-1\right) \cos x_{n}\right)}$,
for $n \geq 0$. The fixed point form of the developed Newton's formula is

$$
x_{n+1}=g\left(x_{n}\right)=x_{n}-\frac{\left(\left(x_{n}-1\right) \sin x_{n}\right)}{\left(2 \sin x_{n}+\left(x_{n}-1\right) \cos x_{n}\right)} .
$$

Then

$$
g(x)=x-\frac{((x-1) \sin x)}{(2 \sin x+(x-1) \cos x)},
$$

and
$g^{\prime}(x)=1-\frac{(2 \sin x+(x-1) \cos x)(\sin x+(x-1) \cos x)-((x-1) \sin x)(3 \cos x-(x-1) \sin x)}{(2 \sin x+(x-1) \cos x)^{2}}$.
Thus

$$
g^{\prime}(1)=1-\frac{2(\sin 1)^{2}}{4(\sin 1)^{2}}=\frac{1}{2} \neq 0
$$

and so the Newton's method converges linearly. The quadratic convergent method for multiple root is modified Newton's method

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n \geq 0
$$

where m is the order of multiplicity of the zero of the function. To find m, we check that

$$
f^{\prime \prime}(x)=2 \sin x+4(x-1) \cos x-(x-1)^{2} \sin x, \quad \text { and } \quad f^{\prime \prime}(1)=2 \sin 1 \neq 0
$$

so $m=2$. Thus

$$
x_{n+1}=x_{n}-2 \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-2 \frac{\left(\left(x_{n}-1\right) \sin x_{n}\right)}{\left(2 \sin x_{n}+\left(x_{n}-1\right) \cos x_{n}\right)}, \quad n \geq 0
$$

Now using initial approximation $x_{0}=1.5$, we have the following two approximations
$x_{1}=x_{0}-2 \frac{\left(\left(x_{0}-1\right) \sin x_{0}\right)}{\left(2 \sin x_{0}+\left(x_{0}-1\right) \cos x_{0}\right)}=1.0087, \quad x_{2}=x_{1}-2 \frac{\left(\left(x_{1}-1\right) \sin x_{1}\right)}{\left(2 \sin x_{1}+\left(x_{1}-1\right) \cos x_{1}\right)}=1.0000$,
and the relative error is,

$$
\frac{\left|\alpha-x_{2}\right|}{|\alpha|}=\frac{|1-1.0000|}{1}=0.0000
$$

Question 3: Find the values of a, b and c such that the iterative scheme

$$
x_{n+1}=a x_{n}+\frac{b N}{x_{n}^{2}}+\frac{c N^{2}}{x_{n}^{5}}, \quad n \geq 0
$$

converges at least cubically to $\alpha=N^{\frac{1}{3}}$. Use this scheme to find second approximation of $(8)^{\frac{1}{3}}$ when $x_{0}=1.8$.
[6 Marks]

Solution. Given the iterative scheme converges at least cubically means $g^{\prime}=g^{\prime \prime}=0$ at $\alpha=N^{\frac{1}{3}}$. Let

$$
\begin{aligned}
g(x) & =a x+\frac{b N}{x^{2}}+\frac{c N^{2}}{x^{5}}, \quad g\left(N^{\frac{1}{3}}\right)=1=a+b+c, \\
g^{\prime}(x) & =a-\frac{2 b N}{x^{3}}-\frac{5 c N^{2}}{x^{6}}, \quad g^{\prime}\left(N^{\frac{1}{3}}\right)=0=a-2 b-5 c, \\
g^{\prime \prime}(x) & =0+\frac{6 b N}{x^{4}}+\frac{30 c N^{2}}{x^{7}}, \quad g^{\prime \prime}\left(N^{\frac{1}{3}}\right)=0=3 b+15 c,
\end{aligned}
$$

Solving these three equations for unknowns a, b and c, we obtain $a=b=\frac{5}{9}$ and $c=-\frac{1}{9}$. Thus

$$
x_{n+1}=\frac{5 x_{n}}{9}+\frac{5 N}{9 x_{n}^{2}}-\frac{N^{2}}{9 x_{n}^{5}}, \quad n \geq 0
$$

Using $x_{0}=1.8, N=8$, we obtain

$$
x_{1}=\frac{5 x_{0}}{9}+\frac{5 N}{9 x_{0}^{2}}-\frac{N^{2}}{9 x_{0}^{5}}=1.9954
$$

and

$$
x_{2}=\frac{5 x_{1}}{9}+\frac{5 N}{9 x_{1}^{2}}-\frac{N^{2}}{9 x_{1}^{5}}=2.0000
$$

the required second approximation.
The absolute error can be obtained as

$$
\left|(8)^{1 / 3}-2.0000\right|=|2.0000-2.0000|=0.0000 \quad \text { up to } 4 \mathrm{dp}
$$

Question 4: Use the simple Gaussian elimination method to find the inverse A^{-1} of the following matrix

$$
A=\left(\begin{array}{rrr}
1 & -1 & 2 \alpha \\
2 & 2 & 4 \\
0 & 4 & 8
\end{array}\right)
$$

Using A^{-1}, find the unique solution of the system $A \mathbf{x}=[-4,8,12]^{T}$ taking α the largest possible negative integer value.

Solution. Suppose that the inverse $A^{-1}=B$ of the given matrix exists and let

$$
A B=\left(\begin{array}{rrr}
1 & -1 & 2 \alpha \\
2 & 2 & 4 \\
0 & 4 & 8
\end{array}\right)\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23} \\
b_{31} & b_{32} & b_{33}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\mathbf{I} .
$$

Now to find the elements of the matrix B, we apply the simple Gaussian elimination on the augmented matrix

$$
[A \mid \mathbf{I}]=\left(\begin{array}{rrrcrrr}
1 & -1 & 2 \alpha & \vdots & 1 & 0 & 0 \\
2 & 2 & 4 & \vdots & 0 & 1 & 0 \\
0 & 4 & 8 & \vdots & 0 & 0 & 1
\end{array}\right)
$$

Using $m_{21}=\frac{2}{1}=2$ and $m_{31}=0$, gives

$$
[A \mid \mathbf{I}] \equiv\left(\begin{array}{rrr}
1 & -1 & 2 \alpha \\
\vdots & 1 & 0 \\
0 \\
0 & 4 & 4-4 \alpha \\
\vdots & -2 & 1 \\
0 \\
0 & 4 & 8
\end{array} \vdots\right.
$$

Using $m_{32}=\frac{4}{4}=1$, gives

$$
[A \mid \mathbf{I}] \equiv\left(\begin{array}{rrr}
1 & -1 & 2 \alpha \\
\vdots & 1 & 0 \\
0 \\
0 & 4 & 4-4 \alpha \\
\vdots & -2 & 1
\end{array}\right) 0 .
$$

Solve the first upper system

$$
\left(\begin{array}{rrr}
1 & -1 & 2 \alpha \\
0 & 4 & 4-4 \alpha \\
0 & 0 & 4+4 \alpha
\end{array}\right)\left(\begin{array}{c}
b_{11} \\
b_{21} \\
b_{31}
\end{array}\right)=\left(\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right)
$$

by using backward substitution, we get

$$
\begin{array}{rlrlr}
b_{11}-b_{21} & + & 2 \alpha b_{31} & = & 1 \\
4 b_{21} & +(4-4 \alpha) b_{31} & = & -2 \\
& +(4+4 \alpha) b_{31} & = & 2
\end{array}
$$

which gives $b_{11}=0, \quad b_{21}=-\frac{1}{1+\alpha}, \quad b_{31}=\frac{1}{2(1+\alpha)}$. Similarly, the solution of the second upper system

$$
\left(\begin{array}{rrr}
1 & -1 & 2 \alpha \\
0 & 4 & 4-4 \alpha \\
0 & 0 & 4+4 \alpha
\end{array}\right)\left(\begin{array}{l}
b_{12} \\
b_{22} \\
b_{32}
\end{array}\right)=\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right)
$$

can be obtained as follows:

$$
\begin{aligned}
b_{12}-b_{22} & +2 \alpha b_{32} & =0 \\
4 b_{22} & +(4-4 \alpha) b_{32} & =1 \\
& +(4+4 \alpha) b_{32} & =-1
\end{aligned}
$$

which gives $b_{12}=\frac{1+\alpha}{2(\alpha+1)}, b_{22}=\frac{1}{2(\alpha+1)}, b_{32}=-\frac{1}{4(\alpha+1)}$. Finally, the solution of the third upper system

$$
\left(\begin{array}{rrr}
1 & -1 & 2 \alpha \\
0 & 4 & 4-4 \alpha \\
0 & 0 & 4+4 \alpha
\end{array}\right)\left(\begin{array}{l}
b_{13} \\
b_{23} \\
b_{33}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

can be obtained as follows:

$$
\begin{aligned}
b_{13}-b_{23}+2 \alpha b_{33} & =0 \\
4 b_{23}+(4-4 \alpha) b_{33} & =0 \\
+(4+4 \alpha) b_{33} & =1
\end{aligned}
$$

and it gives $b_{13}=-\frac{1}{4}, b_{23}=\frac{\alpha-1}{4(\alpha+1)}, b_{33}=\frac{1}{4(\alpha+1)}$. Hence the elements of the inverse matrix B are Thus

$$
B=A^{-1}=\left(\begin{array}{rcc}
0 & \frac{1+\alpha}{2(\alpha+1)} & -\frac{1}{4} \\
-\frac{1}{1+\alpha} & \frac{1}{2(\alpha+1)} & \frac{\alpha-1}{4(\alpha+1)} \\
\frac{1}{2(1+\alpha)} & -\frac{1}{4(\alpha+1)} & \frac{1}{4(\alpha+1)}
\end{array}\right),
$$

which is the required inverse of the given matrix A for any α. The inverse does not exist at $\alpha=-1$, so take $\alpha=-2$, we get

$$
B=A^{-1}=\left(\begin{array}{rrr}
0 & 0.5 & -0.25 \\
1 & -0.5 & 0.75 \\
-0.5 & 0.25 & -0.25
\end{array}\right),
$$

which is the required inverse of the given matrix A. Now to find the solution of the system, we do as

$$
\mathbf{x}=A^{-1} \mathbf{b}=\left(\begin{array}{rrr}
0 & 0.5 & -0.25 \\
1 & -0.5 & 0.75 \\
-0.5 & 0.25 & -0.25
\end{array}\right)\left(\begin{array}{r}
-4 \\
8 \\
12
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),
$$

the required solution.

Question 5: Use LU decomposition by Dollittle's method to find the value(s) of nonzero α for which the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
6 \\
3 \\
5
\end{array}\right),
$$

is inconsistent and consistent. Solve the consistent system.

Solution. Since we know that

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right)\left(\begin{array}{rrr}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right)=L U .
$$

Using $m_{21}=\frac{2 \alpha}{\alpha}=2=l_{21}, m_{31}=\frac{1}{\alpha}=l_{31}$, and $m_{32}=\frac{(3 \alpha-4)}{(-9 \alpha)}=l_{32}(\alpha \neq 0)$, gives

$$
\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & \frac{(3 \alpha-4)}{\alpha} & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right) \equiv\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right) .
$$

Obviously, the original set of equations has been transformed to an upper-triangular form. Thus

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
\frac{1}{\alpha} & \frac{(3 \alpha-4)}{(-9 \alpha)} & 1
\end{array}\right)\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right)
$$

which is the required decomposition of A. The given linear system has no solution or infinitely many solution if

$$
\operatorname{det}(A)=\operatorname{det}(U)=\frac{-9 \alpha\left(\alpha^{2}-1\right)}{\alpha}=-9\left(\alpha^{2}-1\right)=\left(\alpha^{2}-1\right)=0,
$$

which gives, $\alpha=-1$ or $\alpha=1$.
To find the solution of the given system when $\alpha=-1$ and it gives

$$
\left(\begin{array}{rrr}
-1 & 4 & 1 \\
-2 & -1 & 2 \\
1 & 3 & -1
\end{array}\right)=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -\frac{7}{9} & 1
\end{array}\right)\left(\begin{array}{rrr}
-1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Now solving the lower-triangular system $L \mathbf{y}=\mathbf{b}$ for unknown vector \mathbf{y}, that is

$$
\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & -\frac{7}{9} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
6 \\
3 \\
5
\end{array}\right) .
$$

Performing forward substitution yields, $\left[y_{1}, y_{2}, y_{3}\right]^{T}=[6,-9,4]^{T}$.
Then solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ for unknown vector \mathbf{x}, that is

$$
\left(\begin{array}{rrr}
-1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
-9 \\
4
\end{array}\right) .
$$

Last row gives, $0 x_{1}+0 x_{2}+0 x_{3}=4$, which is not possible, and so no solution. To find the solution of the given system when $\alpha=1$ and it gives

$$
\left(\begin{array}{rrr}
1 & 4 & 1 \\
2 & -1 & 2 \\
1 & 3 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & \frac{1}{9} & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Now solving the lower-triangular system $L \mathbf{y}=\mathbf{b}$ for unknown vector \mathbf{y}, that is

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
1 & \frac{1}{9} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
3 \\
5
\end{array}\right) .
$$

Performing forward substitution yields, $\left[y_{1}, y_{2}, y_{3}\right]^{T}=[6,-9,0]^{T}$.
Then solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ for unknown vector \mathbf{x}, that is

$$
\left(\begin{array}{rrr}
1 & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
-9 \\
0
\end{array}\right)
$$

Last row gives, $0 x_{1}+0 x_{2}+0 x_{3}=0$, which means we have many solutions. Performing backward substitution and using $x_{3}=t$, yields

$$
\begin{aligned}
x_{1}+4 x_{2}+x_{3} & =6 \\
-9 x_{2} & =-9
\end{aligned}
$$

and it gives, $\left[x_{1}, x_{2}, x_{3}\right]^{T}=[2-t, 1, t]^{T}$, for any nonzero t.

To find the unique solution for system for nonzero $\alpha(\neq \pm 1)$ we do as follows:

$$
L \mathbf{y}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
\frac{1}{\alpha} & \frac{(3 \alpha-4)}{(-9 \alpha)} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
6 \\
3 \\
5
\end{array}\right)=\mathbf{b}
$$

Performing forward substitution yields, $\left[y_{1}, y_{2}, y_{3}\right]^{T}=\left[6,-9, \frac{2 \alpha-2}{\alpha}\right]^{T}$.
Then solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ for unknown vector \mathbf{x}, that is

$$
\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
0 & -9 & 0 \\
0 & 0 & \frac{\left(\alpha^{2}-1\right)}{\alpha}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{r}
6 \\
-9 \\
\frac{2 \alpha-2}{\alpha}
\end{array}\right)
$$

and performing backward substitution yields, $\left[x_{1}, x_{2}, x_{3}\right]^{T}=\left[\frac{2 \alpha-2}{\alpha^{2}-1}, 1, \frac{2 \alpha-2}{\alpha^{2}-1}\right]^{T}$.

