King Saud University: Mathematics Department Math-254
First Semester
Maximum Marks $=30$

1444 H
Midterm Exam.
Time: 120 mins.

Question 1: Show that by eliminate x^{2} between the equations $4 x^{2}+y^{2}=4$ and $x^{2} y^{3}=1$, we get a polynomial equation $y^{5}-4 y^{3}+4=0$ in y. Use $y_{0}=1$ to find second approximation of the intersection point (x, y) of the curves with $x>0$ using Newton's method. [5 Marks]

Solution. Given

$$
4 x^{2}+y^{2}=4 \quad \text { and } \quad x^{2} y^{3}=1 .
$$

Eliminate x^{2}, we have

$$
\begin{gathered}
x^{2}=\frac{1}{y^{3}} \quad \text { or } \quad \frac{4}{y^{3}}+y^{2}=4, \quad \text { gives } \quad y^{5}-4 y^{3}+4=0, \\
f(y)=y^{5}-4 y^{3}+4 \quad \text { and } \quad f^{\prime}(y)=5 y^{4}-12 y^{2} .
\end{gathered}
$$

Applying Newton's iterative formula to find the approximation of this polynomial equation, we have

$$
y_{n+1}=y_{n}-\frac{f\left(y_{n}\right)}{f^{\prime}\left(y_{n}\right)}=y_{n}-\frac{y_{n}^{5}-4 y_{n}^{3}+4}{5 y_{n}^{4}-12 y_{n}^{2}} .
$$

Finding the second approximation using the initial approximation $y_{0}=1$, we get

$$
\begin{aligned}
& y_{1}=y_{0}-\frac{y_{0}^{5}-4 y_{0}^{3}+4}{5 y_{0}^{4}-12 y_{0}^{2}}=1.1429, \\
& y_{2}=y_{1}-\frac{y_{1}^{5}-4 y_{1}^{3}+4}{5 y_{1}^{4}-12 y_{1}^{2}}=1.1399,
\end{aligned}
$$

and

$$
x^{2}=\frac{1}{y^{3}} \quad \text { or } \quad x=\frac{1}{y^{3 / 2}}=\frac{1}{(1.1399)^{3 / 2}}=0.8217 .
$$

Thus the point of intersection is $(x, y)=(0.8217,1.1399)$.

Question 2: The equation $(1-x)^{2} e^{1-x}=0$ has multiple root $\alpha=1$. Develop the Modified Newton's formula for computing the approximation of this root, then use it to find the second approximation x_{2} using $x_{0}=0.75$. Show that the developed formula converges at least quadratically to the root.
[5 Marks]

Solution. Since $\alpha=1$ is a root of $f(x)$, so

$$
\begin{array}{ll}
f(x)=(1-x)^{2} e^{1-x}, & f(1)=0, \\
f^{\prime}(x)=-2(1-x) e^{1-x}-(1-x)^{2} e^{1-x}=(x-3)(1-x) e^{1-x}, & f^{\prime}(1)=0, \\
f^{\prime \prime}(x)=\left(7-6 x+x^{2}\right) e^{1-x}, & f^{\prime \prime}(1)=2 \neq 0,
\end{array}
$$

the function has zero of multiplicity 2 . Using modified Newton's iterative formula, we get

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-2 \frac{\left(1-x_{n}\right)^{2} e^{1-x_{n}}}{\left(x_{n}-3\right)\left(1-x_{n}\right) e^{1-x_{n}}}=x_{n}-2 \frac{\left(1-x_{n}\right)}{\left(x_{n}-3\right)}, \quad n \geq 0 .
$$

Now evaluating this at the give approximation $x_{0}=0.75$, gives

$$
x_{1}=x_{0}-2 \frac{\left(1-x_{0}\right)}{\left(x_{0}-3\right)}=0.9722 \quad \text { and } \quad x_{2}=x_{1}-2 \frac{\left(1-x_{0}\right)}{\left(x_{1}-3\right)}=0.9996 .
$$

The fixed point form of the developed modified Newton's formula is

$$
x_{n+1}=g\left(x_{n}\right)=x_{n}-2 \frac{\left(1-x_{n}\right)}{\left(x_{n}-3\right)}
$$

where

$$
g(x)=x-2 \frac{(1-x)}{(x-3)}
$$

By taking first derivative, we have

$$
g^{\prime}(x)=1-2\left(\frac{2}{(x-3)^{2}}\right), \quad g^{\prime}(1)=1-1=0
$$

Thus the method converges at least quadratically to the given root.
Question 3: Consider the nonlinear system

$$
\begin{aligned}
& x^{3}+y^{3}=k_{1} \\
& -x+y^{3}=k_{2}
\end{aligned}
$$

Using Newton's method by taking the initial approximation $\left(x_{0}, y_{0}\right)^{T}=(0.5,0.5)^{T}$ gives the first approximation $\left(x_{1}, y_{1}\right)^{T}=(1.0800,0.4400)^{T}$. Find the values of k_{1} and k_{2}. [5 Marks]

Solution. We are given the nonlinear system

$$
\begin{aligned}
x^{3}+y & =k_{1} \\
-x+y^{3} & =k_{2}
\end{aligned}
$$

and it gives the functions and the first partial derivatives as follows:

$$
\begin{aligned}
& f_{1}(x, y)=x^{3}+y^{3}-k_{1}, \quad f_{1_{x}}=3 x^{2}, \quad f_{1_{y}}=3 y^{2} \\
& f_{1}(x, y)=-x+y^{3}-k_{2}, \quad f_{2 x}=-1, \quad f_{2 y}=3 y^{2}
\end{aligned}
$$

At the given initial approximation $x_{0}=0.5$ and $y_{0}=0.5$, we get

$$
\begin{aligned}
& f_{1}(0.5,0.5)=0.25-k_{1}, \quad \frac{\partial f_{1}}{\partial x}=f_{1 x}=0.75, \quad \frac{\partial f_{1}}{\partial y}=f_{1 y}=0.75 \\
& f_{2}(0.5,0.5)=-0.3750-k_{2}, \quad \frac{\partial f_{1}}{\partial x}=f_{2 x}=-1, \quad \frac{\partial f_{2}}{\partial y}=f_{2 y}=0.75
\end{aligned}
$$

The Jacobian matrix J and its inverse J^{-1} at the given initial approximation can be calculated as follows:

$$
J=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{rr}
0.75 & 0.75 \\
-1 & 0.75
\end{array}\right) \quad \text { and } \quad J^{-1}=\left(\begin{array}{rr}
0.5714 & -0.5714 \\
0.7619 & 0.5714
\end{array}\right)
$$

Substituting all these values in Newton's formula, we get the first approximation as follows:

$$
\binom{1.0800}{0.4400}=\binom{0.5}{0.5}-\left(\begin{array}{rr}
0.5714 & -0.5714 \\
0.7619 & 0.5714
\end{array}\right)\binom{0.25-k_{1}}{-0.3750-k_{2}}
$$

gives

$$
\begin{aligned}
& 0.5714 k_{1}-0.5714 k_{2}=0.9371 \\
& 0.7619 k_{1}+0.5714 k_{2}=-0.0838
\end{aligned}
$$

then solving for k_{1} and k_{2}, we get

$$
k_{1}=0.64 \quad \text { and } \quad k_{2}=-1
$$

which are the required values of k_{1} and k_{2}.

Question 4: Use the simple Gaussian elimination method to find value of α for which the following matrix is non-invertible (singular)

$$
A=\left(\begin{array}{rrr}
1 & -1 & \alpha \\
1 & 2 & 1 \\
0 & \alpha & -2
\end{array}\right)
$$

then use the smallest positive integer value of α to get the unique solution of the linear system $A \mathbf{x}=[2,8,-4]^{T}$.

Solution. Using $m_{21}=1, m_{31}=0$ and $m_{32}=\frac{\alpha}{3}$, we get

$$
A \equiv\left(\begin{array}{rrr}
1 & -1 & \alpha \\
0 & 3 & 1-\alpha \\
0 & \alpha & -2
\end{array}\right) \equiv\left(\begin{array}{rrr}
1 & -1 & \alpha \\
0 & 3 & 1-\alpha \\
0 & 0 & \frac{\left(\alpha^{2}-\alpha-6\right)}{3}
\end{array}\right)=U
$$

To show that the given matrix is singular, we have to show that

$$
\operatorname{det}(A)=\operatorname{det}(U)=(1)(3)\left(\left(\alpha^{2}-\alpha-6\right) / 3\right)=(\alpha-3)(\alpha+2)=0
$$

Solving the above quadratic equation, we get, $\alpha=3$ and $\alpha=-2$, the possible values of α which make the given matrix singular.
To find the unique solution we take the smallest positive integer value $\alpha=1$ and using $m_{21}=2$, $m_{31}=0$ and $m_{32}=\frac{1}{3}$, gives:
$[A \mid \mathbf{b}]=\left(\begin{array}{rrrcr}1 & -1 & 1 & \vdots & 2 \\ 1 & 2 & 1 & \vdots & 8 \\ 0 & 1 & -2 & \vdots & -4\end{array}\right) \equiv\left(\begin{array}{rrrcr}1 & -1 & 1 & \vdots & 2 \\ 0 & 3 & 0 & \vdots & 6 \\ 0 & 1 & -2 & \vdots & -4\end{array}\right) \equiv\left(\begin{array}{rrrrr}1 & -1 & 1 & \vdots & 2 \\ 0 & 3 & 0 & \vdots & 6 \\ 0 & 0 & -2 & \vdots & -6\end{array}\right)=[U \mid c]$.
Now expressing the set in algebraic form yields

$$
\begin{aligned}
x_{1}-x_{2}+\quad x_{3} & =2 \\
3 x_{2} & \\
& =6 \\
-2 x_{3} & =-6
\end{aligned}
$$

Using backward substitution, we get, $x_{1}=1, x_{2}=2, x_{3}=3$, the unique solution.

Question 5: Use LU-factorization method with Doolittle's method ($l_{i i}=1$) to find the value of α such that the following linear system has infinite many solutions. Then compute these solutions.

$$
\begin{aligned}
x_{1}+x_{2} & =1 \\
3 x_{1}+\alpha x_{2}+5 x_{3} & =8 \\
7 x_{2}+3 x_{3} & =3
\end{aligned}
$$

Solution. Using Simple Gauss-elimination method, we can easily find factorization of A as

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
3 & \alpha & 5 \\
0 & 7 & 3
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 7 /(\alpha-3) & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 1 & 0 \\
0 & (\alpha-3) & 5 \\
0 & 0 & 3-35 /(\alpha-3)
\end{array}\right)=L U
$$

Since by one of the property of the determinant

$$
\operatorname{det}(A)=\operatorname{det}(L U)=\operatorname{det}(L) \operatorname{det}(U)
$$

So when using LU decomposition by Doolittle's method, then

$$
\operatorname{det}(A)=\operatorname{det}(U)=\prod_{i=1}^{n} u_{i i}=\left(u_{11} u_{22} \cdots u_{n n}\right)
$$

where $\operatorname{det}(L)=1$ because L is lower-triangular matrix and all its diagonal elements are unity. Thus the determinant of the given matrix A is

$$
|A|=|U|=(\alpha-3)(3-35 /(\alpha-3))=3 \alpha-44, \quad \alpha \neq 3
$$

So $|A|=0$, gives, $\alpha=44 / 3$ and for this value of α we have non-trivial solutions. By solving the lower-triangular system of the form $L \mathbf{y}=[1,8,3]^{T}$ of the form

$$
L \mathbf{y}=\left(\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
0 & 3 / 5 & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
1 \\
8 \\
3
\end{array}\right)=\mathbf{b}
$$

we obtained the solution $\mathbf{y}=[1,5,0]^{T}$. Now solving the upper-triangular system $U \mathbf{x}=\mathbf{y}$ of the form

$$
U \mathbf{x}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 35 / 3 & 5 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
5 \\
0
\end{array}\right)=\mathbf{y}
$$

If we choose $x_{3}=t \in R, t \neq 0$, then, $x_{2}=3(1-t) / 7$ and $x_{1}=(4+3 t) / 7$, then the non-trivial solutions of the given system is $\mathbf{x}^{*}=[(4+3 t) / 7,3(1-t) / 7, t]^{T}$.

Question 6: Show that the Jacobi method and Gauss-Seidel method both converge for the following linear system

$$
\begin{aligned}
& 9 x_{1}+2 x_{2}+4 x_{3}=20 \\
& x_{1}+10 x_{2}+4 x_{3}=6 \\
& 2 x_{1}-4 x_{2}+10 x_{3}=-15
\end{aligned}
$$

Using Gauss-Seidel method, if $\mathbf{x}^{(0)}=[0,0,0]^{T}$ and $\mathbf{x}^{(1)}=[2.2222,0.3778,-1.7933]^{T}$, then compute an error bound $\left\|x-x^{(10)}\right\|$ for the approximation.

Solution. Since the given linear system is strictly diagonally dominant (SDD), therefore, both methods guaranteed converge. Or, $\left\|T_{J}\right\|_{\infty}<1$ and $\left\|T_{G}\right\|_{\infty}<1$.
Here we will show that the l_{∞}-norm of Jacobi iteration matrix T_{J} and the l_{∞}-norm of GaussSeidel iteration matrix T_{G} is less than 1 , that is

$$
\left\|T_{G}\right\|_{\infty}=\left\|T_{J}\right\|_{\infty}<1
$$

The Jacobi iteration matrix T_{J} can be obtained from the given matrix A as follows
$T_{J}=-D^{-1}(L+U)=-\left(\begin{array}{rrr}1 / 9 & 0 & 0 \\ 0 & 1 / 10 & 0 \\ 0 & 0 & 1 / 10\end{array}\right)\left(\begin{array}{rrr}0 & 2 & 4 \\ 1 & 0 & 4 \\ 2 & -4 & 0\end{array}\right)=\left(\begin{array}{rrr}0 & -2 / 9 & -4 / 9 \\ -1 / 10 & 0 & -4 / 10 \\ -2 / 10 & 4 / 10 & 0\end{array}\right)$.
Then the l_{∞} norm of the matrix T_{J} is

$$
\left\|T_{J}\right\|_{\infty}=\max \left\{\frac{6}{9}, \frac{5}{10}, \frac{6}{10}\right\}=\max \{0.6667,0.5000,0.6000\}=0.6667<1
$$

Since the Gauss-Seidel iteration matrix is defined as

$$
T_{G}=-(D+L)^{-1} U
$$

and by using the given information, we have

$$
T_{G}=-\left(\begin{array}{rrr}
1 / 9 & 0 & 0 \\
-1 / 90 & 1 / 10 & 0 \\
-2 / 75 & 1 / 25 & 1 / 10
\end{array}\right)\left(\begin{array}{ccc}
0 & 2 & 4 \\
0 & 0 & 4 \\
& & \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{rrr}
0 & -2 / 9 & -4 / 9 \\
0 & 1 / 45 & -16 / 45 \\
0 & 4 / 75 & -4 / 75
\end{array}\right)
$$

Then the l_{∞} norm of the matrix T_{G} is

$$
\left\|T_{G}\right\|_{\infty}=\max \left\{\frac{6}{9}, \frac{17}{45}, \frac{8}{75}\right\}=\max \{0.6667,0.3778,0.1067\}=0.6667<1
$$

Using the error bound formula of Gauss-Seidel method, we obtain

$$
\left\|\mathbf{x}-\mathbf{x}^{(10)}\right\| \leq \frac{(0.6667)^{10}}{1-0.6667}\left\|\left(\begin{array}{r}
2.2222 \\
0.3778 \\
-1.7933
\end{array}\right)-\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)\right\| \leq(0.0521)(2.2222)=0.1157
$$

