King Saud University: Mathematics Department Math-254 First Semester 1445 H
 Maximum Marks $=\mathbf{2 5}$

Question 1: Construct the LU decomposition of the following matrix A by using the LU decomposition by Doolittle's method. Find the value(s) of α for which the following matrix

$$
A=\left(\begin{array}{rrr}
1 & -1 & \alpha \\
-1 & 2 & -\alpha \\
\alpha & 1 & 1
\end{array}\right),
$$

is singular. Also, find the unique solution of the linear system $A \mathrm{x}=[1,1,-1]^{T}$ by using the smallest positive integer value of α.

Question 2: Using LU decomposition by Crout's method, if the determinant of the following matrix A is -3 , then find the unique solution of the linear system $A \mathrm{x}=[1,1,1]^{T}$, where

$$
A=\left(\begin{array}{rrr}
1 & 0 & -1 \\
0 & 1 & 1 \\
-1 & 1 & \alpha
\end{array}\right)
$$

Question 3: Consider the following nonhomogeneous linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
5 & 0 & -1 \\
-1 & 3 & 0 \\
0 & -1 & 4
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{l}
1 \\
2 \\
4
\end{array}\right) .
$$

Find the matrix form of Gauss-Seidel iterative method. How many iterations needed to get an accuracy within 10^{-4}, using Gauss-Seidel iterative method and $\mathbf{x}^{(0)}=[0.5,0.5,0.5]^{T}$.

Question 4: Use the quadratic Lagrange interpolating polynomial by selecting the best three points from $\{-2,0,1,2,2.5\}$ on the function defined by $f(x)=(x+1)^{\frac{1}{3}}$ to estimate the cube root of $\frac{3}{2}$ (that is, $\left.\left(\frac{3}{2}\right)^{\frac{1}{3}}\right)$ and compute an error bound and the absolute error.

