King Saud University:
Mathematics Department
Math-254
First Semester
Maximum Marks $=\mathbf{2 5}$
Second Midterm Exam.

Question 1: Use LU-factorization method with Doolittle's method ($l_{i i}=1$) to find the solution of the consistent system for $\alpha \neq 3$.

$$
\begin{array}{r}
x_{1}+x_{2}=1 \\
3 x_{1}+\alpha x_{2}+5 x_{3}=8 \\
7 x_{2}+3 x_{3}=3
\end{array}
$$

Question 2: Consider the following linear system of equations

$$
\begin{array}{rlr}
2 x_{1}+x_{2} & =3 \\
x_{1}+8 x_{2}+x_{3} & =10 \\
x_{2}+2 x_{3} & =3
\end{array}
$$

If $\mathbf{x}=[1,1,1]^{T}$ be the exact solution of the system, then using Jacobi iterative method and $\mathbf{x}^{(0)}=[0.5,0.5,0.5]^{T}$, compute the absolute error $\left\|\mathbf{x}-\mathbf{x}^{(2)}\right\|$. How many iterations needed to get an accuracy within 10^{-4} using Jacobi iterative method.

Question 3: Consider a linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{ccc}
2 & 1 & 2 \\
1 & 4 & 0 \\
1 & 2 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
1 \\
2
\end{array}\right)
$$

If \mathbf{b} is changed to $\mathbf{b}^{*}=[1,1,1.99]^{T}$, then use the residual vector \mathbf{r} to find the relative error in the solution to the linear system $A \mathbf{x}=\mathbf{b}$.

Question 4: Use the following table to find the best approximation of $f(0.6)$ by using quadratic Lagrange interpolating polynomial for equally spaced data points

$$
\begin{array}{c|ccccccc}
x & 0.15 & 0.2 & 0.3 & 0.5 & 0.55 & 0.8 & 1 \\
\hline f(x) & -0.0427 & -0.0644 & -0.1084 & -0.1733 & -0.1808 & -0.1428 & 0
\end{array}
$$

The above table is for $f(x)=x^{2} \ln x$. Determine the number of points when the error for quadratic Lagrange interpolation for equally spaced data points is to be bounded by 10^{-6}.

