## King Saud University: <br> Second Semester <br> Solution <br> Maximum Marks $=\mathbf{2 5}$

Mathematics Department
1445 H

Math-254
First Midterm Exam.
Time: 90 mins.
Question 1: Show that the x -value of the intersection point $(x, y)$ of the graphs $y=x^{3}+2 x-1$ and $y=\sin x$ is lying in the interval $[0.5,1]$. Then use Secant method to find its second approximation, when $x_{0}=0.5$ and $x_{1}=0.55$. Also, find the intersection point.

Solution. For the intersection of the graphs, we mean that $x^{3}+2 x-1=\sin x$ and it gives, $x^{3}+2 x-1-\sin x=0$. Thus, $f(x)=x^{3}+2 x-\sin x-1$. Since $f(x)$ is continuous on [0.5, 1.0] and $f(0.5)=-0.3544, f(1.0)=1.1585$, which shows that $f(0.5) f(1.0)<0$. Hence the x -value (or root of $f(x)=0$ ) lies in the interval $[0.5,1.0]$. Applying Secant iterative formula to find the approximation of this root of the equation, we have

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right)\left(x_{n}^{3}+2 x_{n}-\sin x_{n}-1\right)}{\left(x_{n}^{3}+2 x_{n}-\sin x_{n}-1\right)-\left(x_{n-1}^{3}+2 x_{n-1}-\sin x_{n-1}-1\right)}, \quad n \geq 1 .
$$

Finding the first approximation, taking $n=1$, we get

$$
x_{2}=x_{1}-\frac{\left(x_{1}-x_{0}\right)\left(x_{1}^{3}+2 x_{1}-\sin x_{1}-1\right)}{\left(x_{1}^{3}+2 x_{1}-\sin x_{1}-1\right)-\left(x_{0}^{3}+2 x_{0}-\sin x_{0}-1\right)},
$$

and using the initial approximations $x_{0}=0.5$ and $x_{1}=0.55$, we get

$$
x_{2}=0.55-\frac{(0.55-0.5)\left((0.55)^{3}-2(0.55)-\sin (0.55)-1\right)}{\left((0.55)^{3}-2(0.55)-\sin (0.55)-1\right)-\left((0.5)^{3}-2(0.5)-\sin (0.5)-1\right)}=0.6806 .
$$

Finding the second approximation, taking $n=2$,

$$
x_{3}=x_{2}-\frac{\left(x_{2}-x_{1}\right)\left(x_{2}^{3}+2 x_{2}-\sin x_{2}-1\right)}{\left(x_{2}^{3}+2 x_{2}-\sin x_{2}-1\right)-\left(x_{1}^{3}+2 x_{1}-\sin x_{1}-1\right)},
$$

and using the initial approximations $x_{1}=0.55$ and $x_{2}=0.6806$, we get

$$
\begin{gathered}
x_{3}=0.6806-\frac{(0.6806-0.55)\left((0.6806)^{3}-2(0.6806)-\sin (0.6806)-1\right)}{\left((0.6806)^{3}-2(0.6806)-\sin (0.6806)-1\right)-\left((0.55)^{3}-2(0.55)-\sin (0.55)-1\right)}, \\
x_{3}=0.6603 .
\end{gathered}
$$

Hence $x_{3}=0.6603$ is the second approximation of the x -value and $(0.6603,0.61)$ is approximation of the intersection point.

Question 2: Find a value of constant $\lambda(\neq-1)$ to ensure the rapid convergence to the root 1.4650 of the iterative scheme

$$
x_{n+1}=\frac{\lambda x_{n}+x_{n}^{-2}+1}{\lambda+1}, \quad n \geq 0 .
$$

Use Newton's method to find the absolute error $\left|\alpha-x_{2}\right|$, when $x_{0}=1.5$.

Solution. Since $\alpha=1.4650$ and we have

$$
g(x)=\frac{\lambda x+x^{-2}+1}{\lambda+1}, \quad g^{\prime}(x)=\frac{\lambda-2 x^{-3}}{\lambda+1} .
$$

Hence for rapid convergence, $g^{\prime}(\alpha)=g^{\prime}(1.4650)=\frac{\lambda-2(1.4650)^{-3}}{\lambda+1}=0$, gives, $\lambda=0.6361$.

Thus the iterative scheme becomes

$$
x_{n+1}=\frac{(0.6361) x_{n}+x_{n}^{-2}+1}{0.6361+1}, \quad n \geq 0
$$

To use Newton's method we need $f(x)$, which can be obtained as

$$
f(x)=g(x)-x=\frac{(0.6361) x+x^{-2}+1}{1.6361}-x=\frac{x^{-2}+1-x}{1.6361}=0
$$

or

$$
f(x)=x^{-2}+1-x=0, \quad \text { and } \quad f^{\prime}(x)=-2 x^{-3}-1
$$

Using these functions values in the Newton's iterative formula

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{-2}+1-x_{n}}{\left(-2 x_{n}^{-3}-1\right)} .
$$

Finding the first approximation of the root using the initial approximation $x_{0}=1.5$, we get

$$
x_{1}=x_{0}-\frac{x_{0}^{-2}+1-x_{0}}{\left(-2 x_{0}^{-3}-1\right)}=1.4651
$$

and the second approximation of the root using the first approximation $x_{1}=1.4656$, we get

$$
x_{2}=x_{1}-\frac{x_{1}^{-2}+1-x_{1}}{\left(-2 x_{1}^{-3}-1\right)}=1.4656
$$

Thus

$$
A b s E=\left|\alpha-x_{2}\right|=|1.4650-1.4656|=0.0006
$$

is the possible absolute error.

Question 3: Show that the equation $(1-x)^{2} e^{1-x}=0$ has multiple root $\alpha=1$ with order of multiplicity 2. Develop the Modified Newton's formula for computing the approximation of this root and use it to find the second approximation $x_{2}$ using $x_{0}=0.75$. Show that the developed formula converges only quadratically to the root.
[7 Marks]

Solution. Since $\alpha=1$ is a root of $f(x)=(1-x)^{2} e^{1-x}$, so

$$
\begin{array}{lll}
f(x) & =(1-x)^{2} e^{1-x}, & f(1)=0 \\
f^{\prime}(x) & =-2(1-x) e^{1-x}-(1-x)^{2} e^{1-x}=(x-3)(1-x) e^{1-x}, & f^{\prime}(1)=0 \\
f^{\prime \prime}(x) & =\left(7-6 x+x^{2}\right) e^{1-x}, & f^{\prime \prime}(1)=2 \neq 0
\end{array}
$$

the function $f(x)$ has multiple root $\alpha=1$ with order of multiplicity 2. Using modified Newton's iterative formula, we get

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-2 \frac{\left(1-x_{n}\right)^{2} e^{1-x_{n}}}{\left(x_{n}-3\right)\left(1-x_{n}\right) e^{1-x_{n}}}=x_{n}-2 \frac{\left(1-x_{n}\right)}{\left(x_{n}-3\right)}, \quad n \geq 0
$$

Now evaluating this at the give approximation $x_{0}=0.75$, gives

$$
x_{1}=x_{0}-2 \frac{\left(1-x_{0}\right)}{\left(x_{0}-3\right)}=0.9722 \quad \text { and } \quad x_{2}=x_{1}-2 \frac{\left(1-x_{0}\right)}{\left(x_{1}-3\right)}=0.9996
$$

The fixed point form of the developed modified Newton's formula is

$$
x_{n+1}=g\left(x_{n}\right)=x_{n}-2 \frac{\left(1-x_{n}\right)}{\left(x_{n}-3\right)},
$$

where

$$
g(x)=x-2 \frac{(1-x)}{(x-3)} .
$$

By taking first derivative, we have

$$
g^{\prime}(x)=1-2\left(\frac{2}{(x-3)^{2}}\right), \quad g^{\prime}(x)=1-\left(\frac{4}{(x-3)^{2}}\right),
$$

and

$$
g^{\prime}(1)=1-\frac{4}{(1-3)^{2}}=1-1=0 .
$$

Now taking the second derivative, we have

$$
g^{\prime \prime}(x)=0-\left(\frac{-8}{(x-3)^{3}}\right), \quad g^{\prime \prime}(1)=0-1=-1 \neq 0 .
$$

Thus the method converges only quadratically to the given root.

Question 4: Consider the nonlinear system

$$
\begin{array}{ll}
x^{3}+\alpha y^{2} & =21 \\
x^{2}+2 y+2 & =0
\end{array}
$$

If the determinant of the Jacobian matrix $J$ is 18 when the initial approximation is $\left(x_{0}, y_{0}\right)^{T}=$ $(1,-1)^{T}$, then use Newton's method to find the first approximation $\left(x_{1}, y_{1}\right)^{T}$.

Solution. Given

$$
\begin{array}{lll}
f_{1}(x, y)=x^{3}+\alpha y^{2}-21, & f_{1 x}=3 x^{2}, & f_{1 y}=2 \alpha y, \\
f_{2}(x, y)=x^{2}+2 y+2, & f_{2 x}=2 x, & f_{2 y}=2 .
\end{array}
$$

The Jacobian matrix $J$ at the given initial approximation can be calculated as

$$
J=\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{rr}
3 x^{2} & 2 \alpha y \\
2 x & 2
\end{array}\right)
$$

and the Jacobian matrix $J$ at the given initial approximation $(1,-1)^{T}$ can be calculated as

$$
J=\left(\begin{array}{rr}
3 & -2 \alpha \\
2 & 2
\end{array}\right) .
$$

Given the determinant of the Jacobian matrix is 18 , so we have

$$
|J|=\left|\begin{array}{rr}
3 & -2 \alpha \\
2 & 2
\end{array}\right|=6+4 \alpha=18, \quad \text { gives } \quad \alpha=3 .
$$

Thus using $\alpha=3$, we have the function values

$$
f_{1}(1,-1)=1+3(-1)^{2}-21=-17, \quad \text { and } \quad f_{2}(1,-1)=(1)^{2}+2(-1)+2=1
$$

and the Jacobian matrix can be obtained as

$$
J=\left(\begin{array}{rr}
3 & -6 \\
2 & 2
\end{array}\right)
$$

Thus the inverse of the Jacobian matrix can be obtained as

$$
J^{-1}=\frac{1}{18}\left(\begin{array}{rr}
2 & 6 \\
-2 & 3
\end{array}\right)
$$

Now using Newton's formula for finding the first approximation we do as

$$
\binom{x_{1}}{y_{1}}=\binom{x_{0}}{y_{0}}-J^{-1}\binom{f_{1}\left(x_{0}, y_{0}\right)}{f_{2}\left(x_{0}, y_{0}\right)}
$$

or

$$
\binom{x_{1}}{y_{1}}=\binom{1}{-1}-J^{-1}\binom{f_{1}(1,-1)}{f_{2}(1,-1)}
$$

so using the given information, we get

$$
\binom{x_{1}}{y_{1}}=\binom{1}{-1}-\frac{1}{18}\left(\begin{array}{rr}
2 & 6 \\
-2 & 3
\end{array}\right)\binom{-17}{1}=\binom{2.5556}{-3.0556}
$$

the required first approximation.

