King Saud University:
 First Semester
 Mathematics Department
 1445 H
 Math-254
 First Midterm Exam.

Solution
Maximum Marks $=\mathbf{2 5}$

Time: 90 mins.

Question 1: Show that $\alpha=1$ is root of the nonlinear equation $1=x e^{1-x}$. Use the best numerical method to find the second approximation x_{2} to this root using initial approximation $x_{0}=0.75$. Compute the absolute error.

Solution. To check $\alpha=1$ is a root of $1-x e^{1-x}=0$, we do

$$
f(x)=1-x e^{1-x}, \quad f(1)=1-1 e^{1-1}=1-1=0,
$$

which shows that $\alpha=1$ is root of the given equation. Now we check the type of the root as

$$
f^{\prime}(x)=-e^{1-x}+x e^{1-x}=(x-1) e^{1-x}, \quad f^{\prime}(1)=0,
$$

which shows that the $\alpha=1$ is a multiple root of the given equation. To find its order of multiplicity, we do as

$$
f^{\prime \prime}(x)=e^{1-x}-(x-1) e^{1-x}=(2-x) e^{1-x}, \quad f^{\prime \prime}(1)=1 \neq 0,
$$

which shows that the order of multiplicity of the multiple root is 2 . So using modified Newton's method by taking $x_{0}=0.75$, we get first two approximation

$$
x_{1}=x_{0}-2 \frac{1-x_{0} e^{1-x_{0}}}{\left(x_{0}-1\right) e^{1-x_{0}}}=0.9804 \quad \text { and } \quad x_{2}=x_{1}-2 \frac{1-x_{0} e^{1-x_{0}}}{\left(x_{0}-1\right) e^{1-x_{0}}}=0.9999,
$$

and the absolute error is, $\left|\alpha-x_{2}\right|=|1-0.9999|=0.0001$.

Question 2: The nonlinear equation $f(x)=\tan x=0$ has a simple root $\alpha=\pi$. Show that the Newton's method for approximating this root is,

$$
x_{n+1}=x_{n}-\sin \left(x_{n}\right) \cos \left(x_{n}\right), \quad n \geq 0 .
$$

Then use it to find the second approximation x_{2} using initial approximation $x_{0}=3.0$. Find the rate of convergence of the developed formula.

Solution. As $f(x)=\tan x$ and so $f^{\prime}(x)=\sec ^{2} x$, and

$$
f(\pi)=\tan (\pi)=0, \quad f^{\prime}(\pi)=\sec ^{2}(\pi) \neq 0,
$$

therefore, the root is the simple root of the given nonlinear equation and the Newton's method is

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\tan \left(x_{n}\right)}{\sec ^{2}\left(x_{n}\right)},
$$

or

$$
x_{n+1}=x_{n}-\frac{\sin \left(x_{n}\right) \cos ^{2}\left(x_{n}\right)}{\cos \left(x_{n}\right)}=x_{n}-\sin \left(x_{n}\right) \cos \left(x_{n}\right), n \geq 0 .
$$

To find the second approximation to the root by using above scheme using $x_{0}=3.0$, we obtain

$$
x_{1}=x_{0}-\sin \left(x_{0}\right) \cos \left(x_{0}\right)=3.1397, \quad x_{2}=x_{1}-\sin \left(x_{1}\right) \cos \left(x_{1}\right)=3.1416,
$$

which gives absolute error

$$
\left|\pi-x_{2}\right|=|3.1416-3.1416|=0, \quad 4 d p .
$$

Since the fixed-point form of the Newton's method for the given problem is,

$$
g(x)=x-\sin (x) \cos (x)=x-\frac{1}{2} \sin (2 x),
$$

therefore,

$$
\begin{aligned}
g(x) & =x-\sin (x) \cos (x), \quad g(\pi)=\pi-\sin (\pi) \cos (\pi)=\pi, \\
g^{\prime}(x) & =1-\cos ^{2}(x)+\sin ^{2}(x)=0, \quad g^{\prime}(\pi)=1-\cos ^{2}(\pi)+\sin ^{2}(\pi)=1-1+0=0, \\
g^{\prime \prime}(x) & =2 \cos (x) \sin (x)+2 \sin (x) \cos (x)=4 \sin (x) \cos (x), \quad g^{\prime \prime}(\pi)=4 \sin (\pi) \cos (\pi)=0, \\
g^{\prime \prime \prime}(x) & =4 \cos ^{2}(x)-4 \sin ^{2}(x), \quad g^{\prime \prime \prime}(\pi)=4 \cos ^{2}(\pi)-4 \sin ^{2}(\pi)=4(1)-4(0)=4 \neq 0 .
\end{aligned}
$$

Hence the convergence of the Newton's method is cubic.

Question 3: Successive approximations x_{n} to the desired root are generated by the scheme

$$
x_{n+1}=\frac{e^{x_{n}}\left(x_{n}+1\right)+2 x_{n}^{2}}{e^{x_{n}}+3 x_{n}}, \quad n \geq 0 .
$$

Find the nonlinear equation $f(x)=0$. Use the secant method to find the second approximation x_{3} of the root $\alpha=-0.7035$, starting with initial approximations $x_{0}=-0.5$ and $x_{1}=-0.25$. Compute the relative error.

Solution. Given

$$
\begin{gathered}
x_{n+1}=\frac{e^{x_{n}}\left(x_{n}+1\right)+2 x_{n}^{2}}{e^{x_{n}}+3 x_{n}}=g\left(x_{n}\right), \quad n \geq 1 . \\
x=\frac{e^{x}(x+1)+2 x^{2}}{e^{x}+3 x}=g(x), \\
g(x)-x=\frac{e^{x}(x+1)+2 x^{2}}{e^{x}+3 x}-x=0, \\
g(x)-x=\frac{e^{x}(x+1)+2 x^{2}-x\left(e^{x}+3 x\right)}{e^{x}+3 x}=0,
\end{gathered}
$$

and after simplifying, we obtained

$$
g(x)-x=\frac{\left(x e^{x}+e^{x}+2 x^{2}-x e^{x}-3 x^{2}\right)}{e^{x}+3 x}=\frac{\left(e^{x}-x^{2}\right)}{e^{x}+3 x}=-\frac{\left(x^{2}-e^{x}\right)}{e^{x}+3 x}=x^{2}-e^{x}=0 .
$$

Thus

$$
f(x)=g(x)-x=x^{2}-e^{x}=0 .
$$

Applying secant iterative formula to find the approximation of this zero, we use the formula

$$
x_{n+1}=x_{n}-\frac{\left(x_{n}-x_{n-1}\right)\left(x_{n}^{2}-e^{x_{n}}\right)}{\left(x_{n}^{2}-e^{x_{n}}\right)-\left(x_{n-1}^{2}-e^{x_{n-1}}\right)}, \quad n \geq 1 .
$$

Finding the third approximation using the initial approximations $x_{0}=-0.5$ and $x_{1}=-0.25$, we get

$$
\begin{aligned}
& x_{2}=x_{1}-\frac{\left(x_{1}-x_{0}\right)\left(x_{1}^{2}-e^{x_{1}}\right)}{\left(x_{1}^{2}-e^{x_{1}}\right)-\left(x_{0}^{2}-e^{x_{0}}\right)}=-0.7477, \\
& x_{3}=x_{2}-\frac{\left(x_{2}-x_{1}\right)\left(x_{2}^{2}-e^{x_{2}}\right)}{\left(x_{2}^{2}-e^{x_{2}}\right)-\left(x_{1}^{2}-e^{x_{1}}\right)}=-0.6946,
\end{aligned}
$$

and the relative error is, $\frac{\left|\alpha-x_{3}\right|}{|\alpha|}=\frac{|-0.7035-(-0.6946)|}{|-0.7035|}=0.0127$.
Question 4: Use Simple Gauss-elimination method to find the many solutions of the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
1 & -1 & \alpha \\
-1 & 2 & -\alpha \\
\alpha & 1 & 1
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right),
$$

by using the suitable value of the α.
Solution. Using $m_{21}=-1, m_{31}=\alpha$ and $m_{32}=\frac{1+\alpha}{1}$, gives matrix form

$$
[A \mid b]=\left(\begin{array}{rrrr}
1 & -1 & \alpha & 1 \\
-1 & 2 & -\alpha & 1 \\
\alpha & 1 & 1 & -1
\end{array}\right) \equiv\left(\begin{array}{rrrr}
1 & -1 & \alpha & 1 \\
0 & 1 & 0 & 2 \\
0 & 1+\alpha & 1-\alpha^{2} & -1-\alpha
\end{array}\right) \equiv\left(\begin{array}{rrrr}
1 & -1 & \alpha & 1 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1-\alpha^{2} & -3-3 \alpha
\end{array}\right) .
$$

Obviously, the original set of equations has been transformed to an upper-triangular form.
So if $1-\alpha^{2} \neq 0$, then we have the unique solution of the given system while for $\alpha= \pm 1$, we have no unique solution. If $\alpha=-1$, then we have infinitely many solution because third row of above augmented matrix gives

$$
0 x_{1}+0 x_{2}+0 x_{3}=0,
$$

and when $\alpha=1$, we have

$$
0 x_{1}+0 x_{2}+0 x_{3}=-6,
$$

which is not possible, so no solution.
Thus taking suitable value of $\alpha=-1$, we have upper-triangular system of the form

$$
\begin{aligned}
x_{1}-x_{2}-x_{3} & =1 \\
x_{2} & =2
\end{aligned}
$$

Performing backward substitution and using $x_{3}=t \in R, t \neq 0$, yields, $x_{2}=2$ and $x_{1}=3+t$, the required many solutions of the given system using $\alpha=-1$.

