# King Saud University: Mathematics Department Math-254 First Semester 1445 H Solution of Makeup First Midterm Exam. Maximum Marks $=\mathbf{2 5}$ 

## Question 1:

Convert the equation $x^{2}-5=0$ to the fixed-point problem $x=x+k\left(x^{2}-5\right)$ with $k$ a nonzero constant. Find a value of $k$ to ensure rapid convergence of the scheme $x_{n+1}=x_{n}+k\left(x_{n}^{2}-5\right)$, for $n \geq 0$ to $\alpha=\sqrt{5}$. If $x_{0}=2$, compute absolute error $\left|\sqrt{5}-x_{2}\right|$.

Solution. Given $x^{2}-5=0$, and it can be written as for $k \neq 0$

$$
k\left(x^{2}-5\right)=0 \quad \text { or } \quad-x+x+k\left(x^{2}-5\right)=0
$$

From this we have

$$
x=x+k\left(x^{2}-5\right)=g(x)
$$

and it gives the iterative scheme

$$
x_{n+1}=x_{n}+k\left(x_{n}^{2}-5\right)=g\left(x_{n}\right), \quad n \geq 0
$$

For guaranteed convergence of this scheme, we mean that

$$
\left|g^{\prime}(x)\right|<1 \quad \text { or } \quad|1+2 k x|<1 \quad \text { or } \quad-1<1+2 k x<1
$$

Moreover, the convergence will be rapid if

$$
g^{\prime}(\alpha)=1+2 \alpha k=0
$$

Since $\alpha=\sqrt{5}$, therefore, $1+2 \sqrt{5} k=0$. Thus, we have $k=-\frac{1}{2 \sqrt{5}}=-0.2236$. Using $x_{0}=2$, we get

$$
x_{1}=x_{0}+k\left(x_{0}^{2}-5\right)=2-0.2236\left(2^{2}-5\right)=2.2236
$$

and

$$
x_{2}=x_{1}+k\left(x_{1}^{2}-5\right)=2.2236-0.2236\left(2.2236^{2}-5\right)=2.2360
$$

so $\left|\sqrt{5}-x_{2}\right|=|2.2361-2.2360|=0.0001$, is the absolute error.

## Question 2:

Successive approximations $x_{n}$ to the desired root are generated by the scheme

$$
x_{n+1}=\frac{1+3 x_{n}^{2}}{4+x_{n}^{3}}, \quad n \geq 0
$$

Find $f\left(x_{n}\right)$ and $f^{\prime}\left(x_{n}\right)$ and then use the Newton's method to find the approximation of the root accurate to $10^{-2}$, starting with $x_{0}=0.5$.

Solution. Given

$$
x=\frac{1+3 x^{2}}{4+x^{3}}=g(x),
$$

and

$$
x-g(x)=x-\frac{1+3 x^{2}}{4+x^{3}}=\frac{x^{4}-3 x^{2}+4 x-1}{4+x^{3}} .
$$

Since, $f(x)=x-g(x)=0$, therefore, we have, $f\left(x_{n}\right)=x_{n}^{4}-3 x_{n}^{2}+4 x_{n}-1$ and $f^{\prime}\left(x_{n}\right)=$ $4 x_{n}^{3}-6 x_{n}+4$. Using these functions values in the Newton's iterative formula (??), we have,

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{x_{n}^{4}-3 x_{n}^{2}+4 x_{n}-1}{4 x_{n}^{3}-6 x_{n}+4} .
$$

Finding the first approximation of the root using the initial approximation $x_{0}=0.5$, we get

$$
x_{1}=x_{0}-\frac{x_{0}^{4}-3 x_{0}^{2}+4 x_{0}-1}{4 x_{0}^{3}-6 x_{0}+4}=0.5-\frac{0.3125}{1.5}=0.2917 .
$$

Similarly, the other approximations can be obtained as

$$
x_{2}=0.2917-\frac{(-0.0813)}{2.3491}=0.3263 ; \quad \text { and } \quad x_{3}=0.3263-\frac{(-0.0029)}{2.1812}=0.3276 .
$$

Notice that $\quad\left|x_{3}-x_{2}\right|=|0.3276-0.3263|=0.0013<10^{-2}$.

## Question 3:

Show that the rate of convergence of Newton's method at the root $\alpha=1$ of the equation $(x-1)^{2} \sin x=0$ is linear. Use quadratic convergence method to find $x_{2}$ using $x_{0}=1.5$. Compute the relative error.

Solution. Since

$$
f(x)=(x-1)^{2} \sin x \quad \text { and } \quad f^{\prime}(x)=2(x-1) \sin x+(x-1)^{2} \cos x,
$$

and $f^{\prime}(1)=0$, gives that $\alpha=1$ is the multiple root. Using Newton's iterative formula, we get
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-\frac{\left(\left(x_{n}-1\right)^{2} \sin x_{n}\right)}{\left(2\left(x_{n}-1\right) \sin x_{n}+\left(x_{n}-1\right)^{2} \cos x_{n}\right)}=x_{n}-\frac{\left(\left(x_{n}-1\right) \sin x_{n}\right)}{\left(2 \sin x_{n}+\left(x_{n}-1\right) \cos x_{n}\right)}$,
for $n \geq 0$. The fixed point form of the developed Newton's formula is

$$
x_{n+1}=g\left(x_{n}\right)=x_{n}-\frac{\left(\left(x_{n}-1\right) \sin x_{n}\right)}{\left(2 \sin x_{n}+\left(x_{n}-1\right) \cos x_{n}\right)} .
$$

Then

$$
g(x)=x-\frac{((x-1) \sin x)}{(2 \sin x+(x-1) \cos x)},
$$

and
$g^{\prime}(x)=1-\frac{(2 \sin x+(x-1) \cos x)(\sin x+(x-1) \cos x)-((x-1) \sin x)(3 \cos x-(x-1) \sin x)}{(2 \sin x+(x-1) \cos x)^{2}}$.
Thus

$$
g^{\prime}(1)=1-\frac{2(\sin 1)^{2}}{4(\sin 1)^{2}}=\frac{1}{2} \neq 0,
$$

and so the Newton's method converges linearly. The quadratic convergent method for multiple root is modified Newton's method

$$
x_{n+1}=x_{n}-m \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, \quad n \geq 0
$$

where $m$ is the order of multiplicity of the zero of the function. To find $m$, we check that

$$
f^{\prime \prime}(x)=2 \sin x+4(x-1) \cos x-(x-1)^{2} \sin x, \quad \text { and } \quad f^{\prime \prime}(1)=2 \sin 1 \neq 0,
$$

so $m=2$. Thus

$$
x_{n+1}=x_{n}-2 \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-2 \frac{\left(\left(x_{n}-1\right) \sin x_{n}\right)}{\left(2 \sin x_{n}+\left(x_{n}-1\right) \cos x_{n}\right)}, \quad n \geq 0 .
$$

Now using initial approximation $x_{0}=1.5$, we have the following two approximations
$x_{1}=x_{0}-2 \frac{\left(\left(x_{0}-1\right) \sin x_{0}\right)}{\left(2 \sin x_{0}+\left(x_{0}-1\right) \cos x_{0}\right)}=1.0087, \quad x_{2}=x_{1}-2 \frac{\left(\left(x_{1}-1\right) \sin x_{1}\right)}{\left(2 \sin x_{1}+\left(x_{1}-1\right) \cos x_{1}\right)}=1.0000$, with the relative, $\left.\mid \alpha-x_{2}\right)|/|\alpha|=|1-1.0000| / 1=0.0000$.

## Question 4:

For what values of $\alpha$ the following linear system has (i) Unique solution, (ii) No solution, (iii) Infinitely many solutions, by using the simple Gaussian elimination method. Use smallest positive integer value of $\alpha$ to get the unique solution of the system.

$$
\begin{aligned}
x_{1}+3 x_{2}+\alpha x_{3} & =4 \\
2 x_{1}-x_{2}+2 \alpha x_{3} & =1 \\
\alpha x_{1}+5 x_{2}+x_{3} & =6
\end{aligned}
$$

Solution. Using the multiples $m_{21}=2, m_{31}=\alpha$, and $m_{32}=\frac{5-3 \alpha}{-7}$, gives matrix form

$$
[A \mid \mathbf{b}]=\left(\begin{array}{rrrr}
1 & 3 & \alpha & 4 \\
2 & -1 & 2 \alpha & 1 \\
\alpha & 5 & 1 & 6
\end{array}\right) \equiv\left(\begin{array}{rrrr}
1 & 3 & \alpha & 4 \\
0 & -7 & 0 & -7 \\
0 & 5-3 \alpha & 1-\alpha^{2} & 6-4 \alpha
\end{array}\right) \equiv\left(\begin{array}{rrrr}
1 & 3 & \alpha & 4 \\
0 & -7 & 0 & -7 \\
0 & 0 & 1-\alpha^{2} & 1-\alpha
\end{array}\right)=[U \mid c] .
$$

So if $1-\alpha^{2} \neq 0$, then we have the unique solution of the given system while for $\alpha= \pm 1$, we have no unique solution. If $\alpha=1$, then we have infinitely many solution because third row of above matrix gives

$$
0 x_{1}+0 x_{2}+0 x_{3}=0,
$$

and when $\alpha=-1$, we have

$$
0 x_{1}+0 x_{2}+0 x_{3}=2,
$$

which is not possible, so no solution.
Since we can not take $\alpha=1$ for the unique solution, so can take next positive integer $\alpha=2$, which gives us upper-triangular system of the form

$$
\begin{aligned}
x_{1}+3 x_{2}+2 x_{3} & =4 \\
-7 x_{2} & =-7 \\
-3 x_{3} & =-1
\end{aligned}
$$

Solving this system using backward substitution, we get, $x_{1}=1 / 3, x_{2}=1, x_{3}=1 / 3$, the required unique solution of the given system using smallest positive integer value of $\alpha$.

