King Saud University
Final Exam, S2 1444
M 507 - Advanced Operations Research
Time: 3 hours - Marks: 40

Answer the following questions.

Q1: [4+2+4]

In the reliability diagram below, the reliability of each component is constant and independent. Assuming that each has the same reliability R, compute the system reliability as a function of R using the following methods:
(a) Decomposition using B as the keystone element.
(b) The reduction method.
(c) Compute the importance of each component if $\mathrm{R}_{\mathrm{A}}=0.8, \mathrm{R}_{\mathrm{B}}=0.9$,
$\mathrm{R}_{\mathrm{C}}=0.95$ and $\mathrm{R}_{\mathrm{D}}=0.98$

Q2: [4+4]

(a) If $X(t)$ represents a size of a population where $X(0)=1$, using the following differential equations

$$
\begin{align*}
& \frac{d p_{0}(t)}{d t}=-\lambda_{0} p_{0}(t) \tag{1}\\
& \frac{d p_{n}(t)}{d t}=\lambda_{n-1} p_{n-1}(t)-\lambda_{n} p_{n}(t), n=1,2,3, \ldots \tag{2}
\end{align*}
$$

Prove that: $X(t) \sim \operatorname{geom}(p), p=e^{-\lambda t}$ when $\lambda_{0}=0$ and $\lambda_{n}=n \lambda$, and then find the mean and variance of this process.
(b) Suppose that minor defects are distributed over the length of a cable as a Poisson process with rate α, and that, independently, major defects are distributed over the cable according to a Poisson process of rate β. Let $X(t)$ be the number of defects, either major or minor, in the cable up to length t. Argue that $X(t)$ must be a Poisson process of rate $\alpha+\beta$.

Q3: [2.5+2.5]

If x is the life of an item of a product. Find the mean time to failure MTTF, variance, median, failure rate at 500 hours, and also, determine the probability that the item will survive until age 500 hours, in each of the following cases.
(a) $X \sim \operatorname{Weibull}(\eta, \beta)$ where $\beta=1.5, \eta=1000$
(b) $X \sim \operatorname{Lognormal}\left(\mu, \sigma^{2}\right)$ where $\mu=6.908, \sigma=0.317$

Q4: [3+3+3]

(a) For the Markov process $\left\{X_{t}\right\}, t=0,1,2, \ldots, n$ with states $i_{0}, i_{1}, i_{2}, \ldots, i_{n-1}, i_{n}$

Prove that: $\operatorname{Pr}\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}, \ldots, X_{n}=i_{n}\right\}=p_{i_{0}} P_{i_{0 i} i_{1}} P_{i_{i 2}} \ldots P_{i_{n-1} i_{n}}$ where $p_{i_{0}}=\operatorname{Pr}\left\{X_{0}=i_{0}\right\}$
(b) If a Markov chain $\mathrm{X}_{0}, \mathrm{X}_{1}, \mathrm{X}_{2}, \ldots$ has the transition probability matrix

$$
\mathbf{P}=\begin{gathered}
\quad 0 \\
0 \\
0 \\
1
\end{gathered}\left|\begin{array}{ccc}
1 & 2 \\
2 & 0.2 & 0.3 \\
0.2 & 0.5 \\
0.4 & 0.2 & 0.4 \\
0.5 & 0.3 & 0.2
\end{array}\right|
$$

and initial distribution $p_{0}=0.5, p_{1}=0.2$ and $p_{2}=0.3$ Find $\operatorname{pr}\left\{X_{1}=1, X_{2}=1, X_{3}=0\right\}$
(c) Consider the problem of sending a binary message, 0 or 1 , through a signal channel consisting of several stages, where transmission through each stage is subject to a fixed probability of error α. Suppose that $X_{0}=0$ is the signal that is sent and let X_{n} be the signal that is received at the nth stage. Assume that $\left\{X_{n}\right\}$ is a Markov chain with transition probabilities $P_{00}=P_{11}=1-\alpha$ and $P_{01}=P_{10}=\alpha$, where $0<\alpha<1$.
(i) Determine $\operatorname{Pr}\left\{X_{0}=0, X_{1}=0, X_{2}=0\right\}$, the probability that no error occurs up to stage $n=2$.
(ii) Determine the probability that a correct signal is received at stage 2 .

Q5: [4+4]

(a) Wild West produces two types of cowboy hats. A type 1 hat requires twice as much labor time as a type 2 . If the all available labor time is dedicated to Type 2 alone, the company can produce a total of 400 Type 2 hats a day. The respective market limits for the two types are 150 and 200 hats per day. The profit is $\$ 8$ per Type 1 hat and $\$ 5$ per Type 2 hat. Determine the number of hats of each type that would maximize profit.
(b) Solve the following linear programming problem by using Simplex method

$$
\begin{array}{cc}
\min & \mathrm{z}=4 \mathrm{x}_{1}-\mathrm{x}_{2} \\
\text { s.t } & 2 \mathrm{x}_{1}+\mathrm{x}_{2} \leq 8 \\
& \mathrm{x}_{2} \leq 5 \\
& \mathrm{x}_{1}-\mathrm{x}_{2} \leq 4 \\
& \mathrm{x}_{1}, \mathrm{x}_{2} \geq 0
\end{array}
$$

Table 1

Standard Normal Cumulative Probability Table

Cumulative probabilitles for POSITIVE $\mathbf{z - v a l u s e}$ are shown in the following table:

2	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5235	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6654	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8105	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8269	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8435	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9725	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9603	0.9808	0.9812	0.9617
2.1	0.9621	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9061	0.9864	0.9868	0.9671	0.9875	0.9878	0.9881	0.9884	0.9887	0.9690
2.3	0.9693	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9843	0.9845	0.9945	0.9848	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9857	0.9959	0.9960	0.9961	0.9962	0.9963	0.9954
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9969	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Table 2

$\mathbf{B}_{2}-\mathbf{B}_{1}^{2}=\Gamma(\mathbf{2} / \boldsymbol{\beta}+\mathbf{1})-\Gamma^{2}(\mathbf{1} / \boldsymbol{\beta}+\mathbf{1})$ as a Function of the Shape Parameter $\boldsymbol{\beta}$		
$\boldsymbol{\beta}$	B_{1}	$B_{2}-B_{1}^{2}$
1.0	1.0000	1.0000
1.1	0.9649	0.7714
1.2	0.9407	0.6197
1.3	0.9336	0.5133
1.4	0.9114	0.4351
1.5	0.9027	0.3757
1.6	0.8966	0.3292
1.7	0.8922	0.2919
1.8	0.8893	0.2614
1.9	0.8874	0.2360
2.0	0.8862	0.2146
2.5	0.8873	0.1441
3.0	0.8930	0.1053
3.5	0.8997	0.0811
4.0	0.9064	0.0647
5.0	0.9182	0.0442

Model Answer

Q1: $[4+2+4]$

In the reliability diagram shown in Fig. 1, the reliability of each component is constant and independent. Assuming that each has the same reliability R, compute the system reliability as a function of R using the following methods:
a) Decomposition using B as the keystone element.

Fig. 1: Reliability diagram
Using B as the keystone element, we have two cases i.e., the case when B functions and the case when it does not.

For the case when B functions, the system reduced to Fig 2.

Fig. 2: The case when B functions
Thus the reliability of the system depends only on the reliability of component A and D. Note that $R_{A}=R_{B}=R_{C}=R_{D}=R$

Therefore,

$$
R^{+}=R_{A} R_{D}=R^{2}
$$

For the case when B fails, the system block is as shown in Fig. 3, which is a series system.

Fig. 3: The case when B fails to work
Thus the reliability of the system depends on A, C, and D , therefore we have:

$$
R^{-}=R_{A} R_{C} R_{D}=R^{3}
$$

Thus the reliability of the system using the two decompositions is given as:

$$
\begin{aligned}
& R_{\text {system }}=R_{B} R^{+}+\left(1-R_{B}\right) R^{-} \\
& R_{\text {system }}=R\left(R^{2}\right)+(1-R) R^{3} \\
& R_{\text {system }}=2 R^{3}-R^{4}
\end{aligned}
$$

b) Using the reduction method

With this method, it can be seen that components B and C are in parallel and jointly in series with A and D. therefore the reduced system is given in Fig. 4.

$\mathrm{A} \quad \mathrm{B} \| \mathrm{C} \quad \mathrm{D}$

Fig. 4: Reduced system
For parallel components B and C, we have

$$
\begin{aligned}
& R_{B \| C}=1-\prod_{i=1}^{2}\left(1-R_{i}\right) \\
& R_{B \| C}=R_{B}+R_{C}-R_{B} R_{C} \\
& R_{B \| C}=2 R-R^{2}
\end{aligned}
$$

The reliability of the system is thus given as:

$$
\begin{aligned}
& R_{\text {system }}=R_{A} R_{B| | C} R_{D} \\
& R_{\text {system }}=R\left(2 R-R^{2}\right) R \\
& R_{\text {system }}=2 R^{3}-R^{4}
\end{aligned}
$$

c)

Recall that the reliability of the system is given as:

$$
R_{\text {sysen }}=R_{A} R_{D}\left(R_{B}+R_{C}-R_{B} R_{C}\right)
$$

The importance of each component is computed by taking the partial derivative with respect to each of the component.

Thus the importance of component A is given as:

$$
\begin{aligned}
& \frac{\delta R_{\text {SSten }}}{\delta R_{A}}=\frac{\delta\left(R_{A} R_{D}\left(R_{B}+R_{C}-R_{B} R_{C}\right)\right)}{\delta R_{A}} \\
& I_{A}=R_{D}\left(R_{B}+R_{C}-R_{B} R_{C}\right) \\
& \Rightarrow \mathrm{I}_{\mathrm{A}}=0.98(0.9+0.95-0.9 \times 0.95) \\
&=0.9751
\end{aligned}
$$

The importance of component B is given as:

$$
\begin{aligned}
& \frac{\delta R_{\text {system }}}{\delta R_{B}}=\frac{\delta\left(R_{A} R_{D}\left(R_{B}+R_{C}-R_{B} R_{C}\right)\right)}{\delta R_{B}} \\
& I_{B}=R_{A} R_{D}-R_{A} R_{D} R_{C} \\
& \Rightarrow \mathrm{I}_{\mathrm{B}}=0.8(0.98)-0.8(0.98)(0.95) \\
&=0.0392
\end{aligned}
$$

The importance of component C is given as:

$$
\begin{aligned}
& \frac{\delta R_{\text {system }}}{\delta R_{C}}=\frac{\delta\left(R_{A} R_{D}\left(R_{B}+R_{C}-R_{B} R_{C}\right)\right)}{\delta R_{C}} \\
& I_{C}=R_{A} R_{D}-R_{A} R_{B} R_{D} \\
& \Rightarrow \mathrm{I}_{\mathrm{c}}= 0.8(0.98)-0.8(0.9)(0.98) \\
&=0.0784
\end{aligned}
$$

The importance of component D is given as:

$$
\begin{aligned}
& \frac{\delta R_{\text {system }}}{\delta R_{D}}=\frac{\delta\left(R_{A} R_{D}\left(R_{B}+R_{C}-R_{B} R_{C}\right)\right)}{\delta R_{D}} \\
& I_{D}=R_{A}\left(R_{B}+R_{C}-R_{B} R_{C}\right) \\
& \Rightarrow \mathrm{I}_{\mathrm{D}}=0.8(0.9+0.95-0.9 \times 0.95) \\
&=0.796
\end{aligned}
$$

Q2: [4+4]
(a) $\begin{aligned} \frac{d p_{0}(t)}{d t} & =-\lambda_{0} p_{0}(t) \\ \frac{d p_{n}(t)}{d t} & =\lambda_{n-1} p_{n-1}(t)-\lambda_{n} p_{n}(t), n=1,2,3, \ldots\end{aligned}$

The initial condition is $X(0)=1 \quad \Rightarrow p_{1}(0)=1$

$$
\Rightarrow p_{n}(0)= \begin{cases}1 & , n=1 \\ 0 & , \text { otherwise }\end{cases}
$$

$\lambda_{0}=0$
(1) $\Rightarrow \frac{d p_{0}(t)}{d t}=0$

$$
\begin{equation*}
\Rightarrow p_{0}(t)=0 \tag{3}
\end{equation*}
$$

(2) $\Rightarrow \frac{d p_{n}(t)}{d t}=\lambda_{n-1} p_{n-1}(t)-\lambda_{n} p_{n}(t)$
$\Rightarrow \frac{d p_{n}(t)}{d t}+\lambda_{n} p_{n}(t)=\lambda_{n-1} p_{n-1}(t), n=1,2, \ldots$
$\because \lambda_{n}=n \lambda, \quad \lambda_{n-1}=(n-1) \lambda$
$\therefore \frac{d p_{n}(t)}{d t}+n \lambda p_{n}(t)=(n-1) \lambda p_{n-1}(t), \mathrm{n}=1,2, \ldots$
Multiply both sides by $e^{\text {nat }}$
$e^{n \lambda t}\left[\frac{d p_{n}(t)}{d t}+n \lambda p_{n}(t)\right]=(n-1) \lambda p_{n-1}(t) e^{n \lambda t}$
$\therefore \frac{d}{d t}\left[p_{n}(t) e^{n t t}\right]=(n-1) \lambda p_{n-1}(t) e^{n \lambda t}$
$\Rightarrow \int_{0}^{t} d\left[p_{n}(x) e^{n \lambda x}\right]=(n-1) \lambda \int_{0}^{t} p_{n-1}(x) e^{n x x} d x$
$\therefore\left[p_{n}(x) e^{n x x}\right]_{0}^{t}=(n-1) \lambda \int_{0}^{t} p_{n-1}(x) e^{n x x} d x$
$\Rightarrow p_{n}(t)=e^{-n \lambda t}\left[p_{n}(0)+(n-1) \lambda \int_{0}^{t} p_{n-1}(x) e^{n \lambda x} d x\right], n=1,2, \ldots$
which is a recurrence relation.
at $n=1$

$$
\begin{equation*}
p_{1}(t)=e^{-\lambda t}\left[p_{1}(0)+0\right]=e^{-\lambda t} \tag{5}
\end{equation*}
$$

at $n=2$
$p_{2}(t)=e^{-2 \lambda t}\left[p_{2}(0)+\lambda \int_{0}^{t} p_{1}(x) e^{2 \lambda x} d x\right]$
(5) $\Rightarrow p_{1}(x)=e^{-\lambda x}$
$\therefore p_{2}(t)=e^{-2 \lambda t}\left[\lambda \int_{0}^{t} e^{-\lambda x} e^{2 \lambda x} d x\right]$
$\therefore p_{2}(t)=\lambda e^{-2 \lambda t} \int_{0}^{t} e^{\lambda x} d x$

$$
\begin{equation*}
=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{1} \tag{6}
\end{equation*}
$$

Similarly as (5) and (6), we deduce that
$p_{n}(t)=e^{-\lambda t}\left(1-e^{-\lambda t}\right)^{n-1}$

$$
=p(1-p)^{n-1}, \quad p=e^{-\lambda t}, n=1,2, \ldots
$$

$\therefore X(t) \sim \operatorname{geom}(p), p=e^{-\lambda t}$
$\operatorname{Mean}[X(t)]=1 / p=e^{\lambda t}$,
$\operatorname{Variance}[X(t)]=\frac{1-p}{p^{2}}=\frac{1-e^{-\lambda t}}{e^{-2 \lambda t}}$
(b)

For minor defects, let $Z \sim \operatorname{Poisson}(\alpha)$ and for major defects, let $Y \sim \operatorname{Poisson}(\beta)$,
where Y and Z are independent random variables. $X(t)$ be the number of defects, either major or minor i.e. $X=Y+Z$

The pgf for Y is given by

$$
\begin{aligned}
P_{Y}(t) & =\sum_{y=0}^{\infty} t^{y} \frac{\beta^{y}-\beta}{y!} \\
& =e^{-\beta} \sum_{y=0}^{\infty} \frac{(t \beta)^{y}}{y!} \\
& =e^{-\beta} e^{t \beta} \\
P_{Y}(t) & =e^{\beta(t-1)}
\end{aligned}
$$

Similarly, the pgf for Z is given by
$P_{Z}(t)=e^{\alpha(t-1)}$

The pgf for the sum $X=Y+Z$ is given by the product of pgfs for both Y and Z
So, $P_{X}(t)=e^{\beta(t-1)} e^{\alpha(t-1)}$

$$
=e^{(\alpha+\beta)(t-1)}
$$

$\therefore X(t)$ must be a Poisson process of rate $\alpha+\beta$.
Q3: $[2.5+2.5]$
(a)

For Weibull distribution
MTTF

$$
\begin{aligned}
M T T F & =\eta \Gamma\left(\frac{1}{\beta}+1\right) \\
& =1000 \Gamma\left(\frac{1}{1.5}+1\right) \\
& =\eta B_{1} \\
& =1000 \times 0.9027 \\
& =902.7
\end{aligned}
$$

Variance

$$
\begin{aligned}
\operatorname{Var}(X) & =\eta^{2}\left[B_{2}-B_{1}^{2}\right] \\
& =1000^{2}[0.3757] \\
& =375700
\end{aligned}
$$

The median $x_{0.50}$

$$
\begin{aligned}
x_{p}= & \left(\ln \left(\frac{1}{1-p}\right)\right)^{1 / \beta} \times \eta \\
x_{0.50} & =\left(\ln \left(\frac{1}{1-0.50}\right)\right)^{1 / 1.5} \times 1000 \\
& =(\ln 2)^{1 / 1.5} \times 1000 \\
& =783.2198
\end{aligned}
$$

The failure rate at 500 hours $\lambda(500)$,

$$
\begin{aligned}
& \lambda(x)=\frac{f(x)}{R(x)} \\
&=\frac{\frac{\beta}{\eta}\left[\frac{x}{\eta}\right]^{\beta-1} \exp \left[-\left(\frac{x}{\eta}\right)^{\beta}\right]}{\exp \left[-\left(\frac{x}{\eta}\right)^{\beta}\right]} \\
&= \frac{\beta}{\eta}\left[\frac{x}{\eta}\right]^{\beta-1} \\
& \begin{aligned}
\lambda(500) & =\frac{1.5}{1000} \times\left[\frac{500}{1000}\right]^{1.5-1} \\
& =\frac{1.5}{1000}(0.5)^{0.5} \\
& =1.0607 \times 10^{-3} \text { hours }
\end{aligned} \\
&
\end{aligned}
$$

The reliability at 500 hours $R(500)$,

$$
\begin{aligned}
R(x) & =\exp \left[-\left(\frac{x}{\eta}\right)^{\beta}\right] \\
& =e^{-\left(\frac{500}{1000}\right)^{1.5}} \\
& =\exp \left[-(0.5)^{1.5}\right] \\
& =0.70219
\end{aligned}
$$

(b)

For Lognormal distribution
MTTF

$$
\begin{aligned}
M T T F & =e^{\mu+\sigma^{2} / 2} \\
& =e^{\left[6.908+0.5(0.317)^{2}\right]} \\
& =1051.785526
\end{aligned}
$$

Variance

$$
\begin{aligned}
\operatorname{Var}(X) & =\exp \left(2 \mu+\sigma^{2}\right)\left[\exp \left(\sigma^{2}\right)-1\right] \\
& =\exp \left(2 \times 6.908+0.317^{2}\right)\left[\exp \left(0.317^{2}\right)-1\right] \\
& =116943.6187
\end{aligned}
$$

The median $x_{0.50}$

$$
\begin{aligned}
x_{p}= & \exp \left(\mu+z_{p} \sigma\right) \\
x_{0.50} & =\exp (\mu+0 \times \sigma) \\
& =e^{\mu} \\
& =e^{6.908} \\
& =1000.244751
\end{aligned}
$$

The failure rate at 500 hours $\lambda(500)$,

$$
\begin{aligned}
& \lambda(x)=\frac{f(x)}{R(x)} \\
&=\frac{\frac{1}{\sigma x} \varphi\left[\frac{\ln x-\mu}{\sigma}\right]}{1-\Phi\left[\frac{\ln x-\mu}{\sigma}\right]} \\
&=\frac{\frac{1}{\sigma x} \frac{1}{\sqrt{2 \pi} \sigma} e^{-(\ln x-\mu)^{2} / 2 \sigma^{2}}}{1-\Phi\left[\frac{\ln x-\mu}{\sigma}\right]} \\
& \begin{aligned}
\lambda(500) & =\frac{7.258965119 \times 10^{-4}}{\Phi(2.19)} \\
& =\frac{7.258965119 \times 10^{-4}}{0.9857} \\
& =7.3643 \times 10^{-4} \mathrm{hours}
\end{aligned}
\end{aligned}
$$

The reliability at 500 hours $R(500)$,

$$
\begin{aligned}
& R(x)=1-\Phi\left[\frac{\ln x-\mu}{\sigma}\right] \\
&=1-\Phi\left[\frac{\ln 500-6.908}{0.317}\right] \\
&=1-\Phi[-2.19] \\
&=\Phi(2.19) \\
& \therefore R(500)=0.9857
\end{aligned}
$$

Q4: $[3+3+3]$
(a)
$\because \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\} \cdot \operatorname{Pr}\left\{\mathrm{X}_{n}=\mathrm{i}_{n} \mid \mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\}$
$=\operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n-1}=\mathrm{i}_{n-1}\right\} \cdot \mathrm{P}_{\mathrm{i}_{n-1} \mathrm{i}_{n}} \quad$ Definition of Markov
By repeating this argument $n-1$ times
$\therefore \operatorname{Pr}\left\{\mathrm{X}_{0}=\mathrm{i}_{0}, \mathrm{X}_{1}=\mathrm{i}_{1}, \mathrm{X}_{2}=\mathrm{i}_{2}, \ldots, \mathrm{X}_{n}=\mathrm{i}_{n}\right\}$
$=p_{i_{0}} P_{i_{0} i_{1}} P_{i_{1} i_{2}} \ldots P_{i_{n-2} i_{n-1}} P_{i_{n-1} i_{n}}$ where $p_{i_{0}}=\operatorname{Pr}\left\{X_{0}=i_{0}\right\}$ is obtained from the initial distribution of the process.
(b)

$$
\left.\begin{array}{l}
\operatorname{pr}\left\{\mathrm{X}_{1}=1, \mathrm{X}_{2}=1, \mathrm{X}_{3}=0\right\}=\mathrm{p}_{1} \mathrm{P}_{11} \mathrm{P}_{10}, \quad \mathrm{p}_{1}=\operatorname{pr}\left\{\mathrm{X}_{1}=1\right\} \\
\begin{array}{rl}
\operatorname{pr}\left\{\mathrm{X}_{1}=1\right\} & =\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=0\right) \operatorname{Pr}\left(\mathrm{X}_{0}=0\right)+\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=1\right) \operatorname{Pr}\left(\mathrm{X}_{0}=1\right)+\operatorname{Pr}\left(\mathrm{X}_{1}=1 \mid \mathrm{X}_{0}=2\right) \operatorname{Pr}\left(\mathrm{X}_{0}=2\right) \\
& =P_{01} p_{0}+P_{11} p_{1}+P_{21} p_{2} \\
& =0.3(0.5)+0.2(0.2)+0.3(0.3)=0.28
\end{array} \\
\therefore \operatorname{pr}\left\{X_{1}=1, X_{2}=1, X_{3}=0\right\}=0.28(0.2)(0.4)=0.0224
\end{array}\right\}
$$

The transition probability matrix can be written as

$$
\mathbf{P}=\begin{array}{cc}
0 & 1 \\
0 \| 1-\alpha & \alpha \\
1 \| \alpha & 1-\alpha \|
\end{array}
$$

(i) The probability that no error occurs up to stage $n=2$ is given as follows.

$$
\begin{aligned}
\operatorname{Pr}\left\{X_{0}=0, X_{1}=0, X_{2}=0\right\} & =p_{0} P_{00} P_{00} \\
& =1 \times(1-\alpha) \times(1-\alpha) \\
& =(1-\alpha)^{2}
\end{aligned}
$$

where $p_{0}=\operatorname{pr}\left(X_{0}=0\right)=1$
(ii) The probability that a correct signal is received at stage 2 is given as follows.

$$
\begin{aligned}
& \operatorname{Pr}\left\{X_{0}=0, X_{1}=0, X_{2}=0\right\}+\operatorname{Pr}\left\{X_{0}=0, X_{1}=1, X_{2}=0\right\} \\
& =p_{0} P_{00} P_{00}+p_{0} P_{01} P_{10} \\
& =(1-\alpha)^{2}+\alpha^{2} \\
& =1-2 \alpha+2 \alpha^{2}
\end{aligned}
$$

Q5: $[4+4]$
(a)

Let x_{1} is the daily \# of type 1 hat and x_{2} is the daily \# of type 2 hat The LP problem will be as follows:

\therefore The optimal solution is $x_{1}=100, x_{2}=200$ where $\max z=\$ 1800$
(b)

Ans: The optimal solution is $x_{1}=0, x_{2}=5$ where $\min z=-5$

