

الرياضيات

College of Science. Department of Mathematics

Ac	Final E ademic Year 1445-1446 Hijri	Exam - First Semester				
	Exam Information	معلومات الامتحان n				
Course name	Complex Analy	اسم المقرر				
Course Code	ض	رمز المقرر				
Exam Date	2023-12-13	1445-05-29	تاريخ الامتحان			
Exam Time	01: (وقت الامتحان				
Exam Duration	3 hours	ثلاث ساعات	مدة الامتحان			
Classroom No.			رقم قاعة الاختبار			
Instructor Name			اسم استاذ المقرر			
	1	1	i			
معلومات الطالب Student Information						
Student's Name			اسم الطالب			
ID number			الرقم الجامعي			
Section No.			رقم الشعبة			
Serial Number			الرقم التسلسلى			
General Instructions:			تعليمات عامة:			
• Your Exam consists (except this paper)	• عدد صفحات الامة					
• Keen your mobile and smart watch out of the						

- Keep your mobile and smart watch out of the classroom.
- يجب إبقاء الهواتف والساعات الذكية خارج قاعة الامتحان.
 يمنع استخدام الألات الحاسبة.

• Calculators are not allowed.

هذا الجزء خاص بأستاذ المادة This section is ONLY for instructor

#	Course Learning Outcomes (CLOs)	Related Question (s)	Points	Final Score
1	C.L.O 1.1	1		
2	C.L.O 1.2	2		
3	C.L.O 1.3	3		
4	C.L.O 2.1	4		
5	C.L.O 2.2	5&6		
6	C.L.O 2.3	7&8		
7				
8				

EXAM COVER PAGE

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Total

Question 1

Prove in details that $\log z_1 z_2 = \log z_1 + \log z_2$. Is it true that $\log z^n = n \log z$, where $n \ge 2$, justify your answer.

See Book

Question 2

Let $f(z) = |z|^2$. Prove that f is differentiable only at one point. Is f analytic? Give reasons.

f is differentiable at 0 is simply to observe that

$$\lim_{z
ightarrow 0}rac{|z|^2}{z}=\lim_{z
ightarrow 0}\overline{z}=0.$$

Besides, if $z_0 \neq 0$, then

$$\lim_{z o z_0} rac{|z|^2 - |z_0|^2}{z - z_0} = \lim_{z o z_0} rac{|z| - |z_0|}{z - z_0} ig(|z| + |z_0|ig).$$

Now, if z approaches z_0 along the circle centered at 0 passing through z_0 , then the previous limit is 0. And if z approaches z_0 along the ray $\{\lambda z_0 \mid \lambda \in (1, +\infty)\}$, then the previous limit is $2\overline{z_0} \neq 0$. Therefore the limit does not exist.

So, using the definition of differentiability I found out that the f(z) is differentiable at zero. But since it is not differentiable in a neighborhood of zero therefore it cannot be analytic at zero and hence is nowhere analytic.

Or, using Cauchy Riemann equations,

$$egin{aligned} f(z) &= |z|^2 = x^2 + y^2 \ &\implies u(x,y) = x^2 + y^2 ext{ and } v(x,y) = 0 \end{aligned}$$

Then I started off by checking whether the Cauchy-Riemann equations were satisfied, and got,

$$u_x=2x$$
 , $u_y=2y$

 $v_x=0$, $v_y=0$

f(z) can only be analytic at the origin

Or,

f(z) is function of z^* since $\left|z\right|^2=zz^*$ so it is not analytic

Question 3

State Liouville's Theorem. Use this Theorem to prove that $\cos z$, is not bounded. Explain why we can't use this Theorem on $\tan z$.

Theorem 1. If a function f is entire and bounded in the complex plane, then f(z) is constant througout the plane.

Note that $\cos z$ is not constant, but an entire function, hence it is necessary unbounded. For $f(z) = \tan z = \frac{\cos z}{\sin z}$, we can't apply Liouville's Theorem since $\tan z$ is not analytic for any $z = n\pi$, $n \in \mathbb{Z}$.

Ouestion 4

State and prove the Cauchy's Residue Theorem.

See book.

Question 5

Find the integral

$$\int_{\gamma} \frac{e^z dz}{z^2 (z^2 + 4)}$$

where γ is the positively oriented circle |z| = 3.

 $f(z) = \frac{e^{z}}{z^{2}(z^{2}+4)} \text{ has 3 isolated singularities, } z = 0 \text{ is a pole of degree 2 and } z = \pm 2i \text{ are simple poles}$ $Res_{z=0}(f(z)) = \frac{1}{4}, Res_{z=\pm c}(f(z)) = \lim_{z \to \pm c} \frac{e^{z}}{2z^{3}}, \text{ where } c = 2i, \text{ thus } Res_{z=2i}f(z) = \frac{-e^{2i}}{16i}, \text{ and } Res_{z=-2i}f(z) = \frac{e^{-2i}}{16i}, \text{ hence } \int_{\gamma} \frac{e^{z}dz}{z^{2}(z^{2}+4)} = 2\pi i \left(\frac{1}{4} - \frac{1}{8}\left(\frac{e^{2i} - e^{-2i}}{2i}\right)\right) = \frac{\pi i}{2}\left(1 - \frac{\sin 2}{2}\right).$

Question 6

Find Laurant series expansion of the function $f(z) = \frac{1}{z^2 - 5z + 4}$ in the annulus 1 < |z| < 4, then use this expansion to find the integral $\int_{\gamma} z^{14} f(z) dz$, where γ is the positively oriented circle |z| = 2.

$$\begin{split} f(z) &= \frac{1}{z^2 - 5z + 4} = \frac{1}{(z - 4)(z - 1)} = \frac{-1}{3(z - 4)} + \frac{1}{3(z - 1)} \\ &= \frac{-1}{3(z - 4)} = \frac{1}{3} \sum_{i=0}^{\infty} \frac{z^i}{4^{i+1}} \quad for \ all \ \left|\frac{z}{4}\right| < 1, \\ &= \frac{1}{3(z - 1)} = \frac{1}{3} \sum_{i=0}^{\infty} \frac{1}{z^{i+1}} \quad for \ all \ \left|\frac{1}{z}\right| < 1, \end{split}$$

$$So, f(z) = \frac{1}{3} \sum_{i=0}^{\infty} \left(\frac{z^{i}}{4^{i+1}} + \frac{1}{z^{i+1}} \right) in the annulus \ 1 < |z| < 4$$
$$z^{14}f(z) = \frac{1}{3} \sum_{i=0}^{\infty} \frac{z^{i+14}}{4^{i+1}} + \frac{1}{3} \left(z^{13} + z^{12} + \dots + \frac{1}{z} \right) + \frac{1}{3} \sum_{i=2}^{\infty} \frac{1}{z^{i}}$$

Thus, $\operatorname{Res}_{z=0}(z^{14}f(z)) = \frac{1}{3}$, hence by Residue Theorem, $\int_{\gamma} z^{14}f(z)dz = \frac{2\pi i}{3}$

Question 7

Use the Residue Theorem to find

$$\int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^4 + 3 \, x^2 + 2}$$

All roots of $x^4 + 3x^2 + 2$ are complex, namely $\pm \sqrt{2}i, \pm i$.

Let $f(z) = \frac{ze^{iz}}{z^4 + 3z^2 + 2}$, Take R > 2 and consider the two positively oriented contours C_R as shown in the graph Thus, $c_0 = i, c_1 = 2i$ are simple poles of f(z) inside C_R with residues $\frac{1}{2e}, \frac{-e^{\sqrt{2}}}{2}$, respectively. $\int_{-R}^{R} \frac{ze^{iz} dz}{z^4 + 3z^2 + 2} = 2\pi i \left(\frac{1}{2e} - \frac{e^{\sqrt{2}}}{2}\right) - \int_{C_R} f(z) dz$ Note that $|f(z)| = \left|\frac{ze^{iz}}{z^4 + 3z^2 + 2}\right| \le \frac{R}{(R^2 - 2)(R^2 - 1)}$, thus

 $\left| \int_{C_R} f(z) dz \right| \le \frac{\pi R^2}{R^4 - 3R^2 + 2} \xrightarrow[R \to \infty]{} 0, \text{ hence } \int_{-\infty}^{\infty} \frac{x \sin x \, dx}{x^4 + 3x^2 + 2} = Im \left[\lim_{R \to \infty} \int_{-R}^{R} \frac{z e^{iz} \, dz}{z^4 + 3z^2 + 2} \right] = \pi \left(\frac{1}{e} - e^{\sqrt{2}} \right)$

Question 8

Use Residue Theorem to find

$$\int_{0}^{2\pi} \frac{d\theta}{1+\sin\theta\cos\theta}$$

Using substitutions, $z = e^{i\theta}$, $0 \le \theta \le 2\pi$, $\sin \theta = \frac{z - \frac{1}{z}}{2i}$, $\cos \theta = \frac{z - \frac{1}{z}}{2i}$ and $d\theta = \frac{dz}{iz}$ we obtain $\int_{0}^{2\pi} \frac{d\theta}{1 + \sin \theta \cos \theta} = \int_{|z| = 1} \frac{4z \, dz}{z^4 + 4iz^2 - 1} = \int_{|z| = 1} \frac{p(z)dz}{q(z)}$, and q(z) has 4 different zeroes, that is 4 simple poles of $f(z) = \frac{p(z)}{q(z)}$. The only poles inside the unit ball are $c_{0,1} = \pm ((-2 + \sqrt{3})i)^{\frac{1}{2}}$, since $|c^2_{0,1}| < 1$, with residues; $\operatorname{Res}_{z=c_i}(f(z)) = \frac{p(c_i)}{q'(c_i)} = \frac{1}{(c_i)^2 + 2i} = \frac{-i}{\sqrt{3}}$, hence $\int_{0}^{2\pi} \frac{d\theta}{1 + \sin \theta \cos \theta} = 2\pi i \left(\frac{-2i}{\sqrt{3}}\right) = \frac{4\pi}{\sqrt{3}}$