

# King Saud University College of Science Numerical Methods Course Syllabus Second Semester 1444 - 1445

# **1.** Course General Information:

| Course Title: Numerical Methods | Course Code: MATH 351                        |  |
|---------------------------------|----------------------------------------------|--|
| Course Level: 5                 | Course Prerequisite: (MATH107 or             |  |
|                                 | MATH202 or MATH244) and (CSC101 or           |  |
|                                 | CSC206 or CSC207).                           |  |
|                                 | Co-requisites for this course (if any): None |  |
| Lecture Time: 10-11 AM.         | Credit Hours: 3                              |  |

#### 2. Faculty Member Responsible for the Course:

| Name                | Rank      | Office Number<br>and Location   | Office Hours                        | Email Address        |
|---------------------|-----------|---------------------------------|-------------------------------------|----------------------|
| Dr. Bandar Almohsen | Professor | 2A284 Building 4<br>Main Campus | 8 AM-1PM<br>Monday and<br>Wednesday | balmohsen@ksu.edu.sa |

#### 3. Course Description:

Numerical Methods for Solving Nonlinear Equations: Bisection method, fixed point method, Newton's method, secant method, multiple roots, modified Newton's method, rate of convergence (error analysis), Newton's method for solving nonlinear systems. Solving Systems of Linear Equations: Gaussian elimination, Gaussian elimination with partial pivoting, LU-decomposition, Jacobi method, Gauss-Seidel method. Interpolation and Polynomial Approximations Lagrange interpolation formula, Newton's interpolation formula, interpolation using linear splines. Numerical Differentiation and Integration: Trapezoidal, and Simpson's rules. Numerical solutions of Ordinary Differential equations; Taylor methods and Runge-Kutta method of order two.

#### 4. Course Academic Calendar

| Week | Topics to be Covered                                                                                                                                                                                                                                    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1-3  | Numerical Methods for Solving Nonlinear Equations: Bisection method, fixed point method, Newton's method, secant method, multiple roots, modified Newton's method, rate of convergence (error analysis), Newton's method for solving nonlinear systems. |
| 4-7  | Solving Systems of Linear Equations:<br>Direct methods: Gaussian elimination, Gaussian elimination with partial pivoting,<br>LU-decomposition.<br>Iterative methods: Jacobi method, Gauss-Seidel method.<br>Error analysis for solving Linear system    |

| 8-10  | Interpolation and Polynomial Approximations<br>Lagrange interpolation formula, divided differences, Newton's interpolation formula,<br>error in polynomial interpolation, interpolation using linear splines. |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11-13 | Numerical Differentiation and Integration                                                                                                                                                                     |
|       | First derivative: two-point formulas (forward and backward) and three-point formulas                                                                                                                          |
|       | (forward, central and backward).                                                                                                                                                                              |
|       | Second derivative: the central method.                                                                                                                                                                        |
|       | Trapezoidal, Simpson's rules, and the error bounds.                                                                                                                                                           |
| 14-15 | Numerical solutions of Ordinary Differential equations;                                                                                                                                                       |
|       | Taylor methods, Runge-Kutta method of order two and the local truncation error for                                                                                                                            |
|       | Euler's and Taylor's formulas.                                                                                                                                                                                |
| 16    | Final exam                                                                                                                                                                                                    |

# 5. Course Objectives:

The main purpose for this course is to introduce the following concepts:

- The main purpose for this course is to introduce:
- Numerical methods for solving mathematical problems
- Analyze the error for these methods
- Write computer algorithms to implement these methods for solving certain mathematical problems using computer.

## 6. Course References:

#### 6.1 Textbooks:

An Introduction to Numerical Analysis using MATLAB, by Rizwan Butt, Infinity Science Press, Hingham, Massachusetts, New Delhi, 2008

## 6.2 Essential References Materials (Journals, Reports, etc.)

1-Numerical Analysis, Richard L. Burden and J. Douglass Faires, fifth edition, Brooks/Cole

2- An Introduction to Numerical Linear Algebra using MATLAB, Rizwan Butt, Heldermann Verlag, Germany, 2008.

#### 6.3 Recommended Textbooks and Reference Material (Journals, Reports, etc)

1-Numerical Analysis, Richard L. Burden and J. Douglass Faires, fifth edition, Brooks/Cole

2- An Introduction to Numerical Linear Algebra using MATLAB, Rizwan Butt, Heldermann Verlag, Germany, 2008.

#### 6.4 Websites:

- 1- KSU Learning Management System
- 2- Internet websites relevant to the course

# 6.5 Other learning material such as computer-based programs/CD, professional standards or regulations and software.

• None

# 7. Teaching Methods:

- At the beginning of studying each topic some examples will be laid out and discussed with the students encouraging them to discover the relevant concepts.
- At the beginning of each lecture, a discussion is conducted with the students about what has been done in the previous lecture in order to establish a link with the current lecture.
- Discussions in the class

- Homework assignments
- Independent study

#### 8. Learning Outcomes:

#### 8.1 Knowledge and Understanding:

After studying this course, the student will acquire the following knowledge and be able to:

- Define error, absolute error and relative error.
- Define a fixed point of a given function.
- State Newton's, Secant and Modified Newton's formulas.
- Define a multiple root of a nonlinear equation, and the order of convergence of an iterative scheme.
- Define the residual vector corresponding to an approximate solution of a given linear system.
- Define the condition number of a given nonsingular matrix.
- Define divided differences of a function and state Lagrange and Newton's interpolation formulas.
- State Taylor's and Runge Kutta methods for solving an initial value problem.

#### 8.2 Cognitive Skills (Thinking and Analysis):

After studying this course, the student will able to:

- 1) Solve a nonlinear equation numerically by different numerical methods and analyze the resulting error.
- 2) Compute the rate of convergence for iterative schemes.
- 3) Solve a system of linear equations by direct and indirect methods and analyze the resulting error.
- 4) Approximate a function or data using polynomial interpolation formulas and analyze the error in these formulas.
- 5) Apply difference formulas to approximate derivatives and analyzing the error in these formulas.
- 6) Approximate a definite integral using trapezoidal and Simpson's rules and analyzing the error in these methods.
- 7) Solve an initial value problem of ordinary differential equations using different methods.
- 8) Write mathematical algorithms for different numerical methods.

#### 8.3 Interpersonal Skills and Responsibility:

After studying this course, the student is expected to:

- To participate in the discussion
- Study, learn and work independently.
- Work effectively in teams.
- Meet deadlines and manage time properly.
- Exhibit ethical behaviour and respect different points of view.

#### 8.4 Communication, Information Technology and Numerical Skills

After studying this course, the student is expected to be able to:

- Present mathematics to others, both in oral and written form clearly and in a well-organized manner.
- Use IT facilities as an aid to mathematical processes and for acquiring available information
- Write algorithms and solve mathematical problems numerically.
- Use library to locate mathematical information.
- 9. Methods of Assessment:

| Course Assessment                       | Mark |
|-----------------------------------------|------|
| Class activates ( in class quizzes, and | 10   |
| homework)                               |      |
| Midterm exams I                         | 25   |
| Midterm exams II                        | 25   |
| Final Examination                       | 40   |
| Total                                   | 100  |

# **10. Course Policies:**

- All exams are closed book.
- The final exam will be comprehensive.

#### **11. Attendance Policy:**

Absence from lectures and/or tutorials shall not exceed 25%. Students who exceed the 25% limit without an accepted medical or emergency excuse shall not be allowed to take the final examination and shall receive a grade of "DN" for the course.