

**KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS**

Semester 462 / MATH-244 (Linear Algebra) / Mid-term Exam 2

Max. Marks: 25

Max. Time: $1\frac{1}{2}$ hrs.

Note: Calculators are not allowed.

Question 1: [Marks: 1+1+1+1+1]

Which of the given choices are correct?

- (i) Let \mathbf{P}_2 be the vector space of all real polynomials in one variable of degree ≤ 2 and $\mathbf{S} = \{u, v\} \subseteq \mathbf{P}_2$. If \mathbf{E} denotes the set of all linear combinations of the vectors in \mathbf{S} , then the set \mathbf{E} is equal to:
 - (a) $\{\alpha u + v \mid \alpha \in \mathbb{R}\}$
 - (b) $\{u + \beta v \mid \beta \in \mathbb{R}\}$
 - (c) \mathbf{P}_2
 - (d) a vector space.
- (ii) If $\mathbf{W} = \{w_1, w_2, w_3, w_4\}$ spans the vector space \mathbf{V} , then we can assert that:
 - (a) $\dim(\mathbf{V}) = 3$
 - (b) $\dim(\mathbf{V}) = 4$
 - (c) $\dim(\mathbf{V}) > 4$
 - (d) $\dim(\mathbf{V}) \leq 4$.
- (iii) Consider the vector space \mathbb{R}^2 with ordered basis $\mathbf{B} = \{(1,0), (1,2)\}$. If $\mathbf{v} \in \mathbb{R}^2$ with the coordinate vector $[\mathbf{v}]_{\mathbf{B}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, then:
 - (a) $\mathbf{v} = (1,0)$
 - (b) $\mathbf{v} = (3,4)$
 - (c) $\mathbf{v} = (1,2)$
 - (d) $\mathbf{v} = (2,2)$.
- (iv) Which of the following matrices cannot be a transition matrix?
 - (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
 - (b) $\begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
 - (c) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
 - (d) $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}$.
- (v) If \mathbf{A} is an invertible matrix of order 3, then $\text{rank}(\mathbf{A})$ is equal to:
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 3.

Question 2: [Marks: 3 + 2 + 2 + 3]

Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 2 \end{bmatrix}$.

- (a) Find a basis \mathbf{B}_1 for the null space $N(\mathbf{A})$.
- (b) Find a basis \mathbf{B}_2 for the column space $\text{col}(\mathbf{A})$.
- (c) Find *nullity* and *rank* of the matrix \mathbf{A} .
- (d) Show that $\mathbf{B}_1 \cup \mathbf{B}_2$ is a basis for the Euclidean space \mathbb{R}^3 .

Question 3: [Marks: 3 + 7]

Consider a vector space \mathbf{E} of dimension 3. Let $\mathbf{B} = \{u_1, u_2, u_3\}$ and $\mathbf{C} = \{v_1, v_2, v_3\}$ be two ordered bases for \mathbf{E} such that the transition matrix ${}_{\mathbf{C}}\mathbf{P}_{\mathbf{B}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ from \mathbf{B} to \mathbf{C} . Then, compute:

- (a) Transition matrix ${}_{\mathbf{B}}\mathbf{P}_{\mathbf{C}}$ from \mathbf{C} to \mathbf{B} .
- (b) Coordinate vectors $[v_1 - v_2]_{\mathbf{C}}$, $[v_1 - v_2]_{\mathbf{B}}$ and $[\mathbf{v}]_{\mathbf{C}}$, where $\mathbf{v} = v_1 - 2u_2 + v_3$.
