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Sequences

1. Definition of a Sequence

A sequence is a function from the natural numbers N to the real numbers R. It is usually written as:

{an}∞n=1 = a1, a2, a3, . . .

Each term an is called the nth term of the sequence.

Examples

� an = 1
n ⇒

{
1, 1

2 ,
1
3 , . . .

}
� an = (−1)n ⇒ {−1, 1,−1, 1, . . . }

� an = n2 ⇒ {1, 4, 9, 16, . . . }

2. Convergence of Sequences

A sequence {an} converges to a real number L if:

∀ε > 0, ∃N ∈ N such that n ≥ N ⇒ |an − L| < ε.

We denote this as limn→∞ an = L, or simply an → L.
Geometric Interpretation:
To visualize this definition, we draw a horizontal band of width 2ε centered at L. This band represents

the ε-neighborhood of the limit. The key idea is that, while a few early terms may fall outside this band,
eventually all terms of the sequence lie inside it.

n

an

L
L+ ε

L− ε

an → L

The dashed line at y = L shows the limit of the sequence (an). The two dashed lines at y = L + ε and
y = L − ε form a horizontal band around L, called the ε-neighborhood. This band represents a tolerance
zone: how close the sequence terms must be to the limit. As shown, while a few early terms lie outside
this band, from a certain index N onward, all terms lie within it — that is, they satisfy |an − L| < ε. This
illustrates the formal definition of convergence: the terms of the sequence get arbitrarily close to the limit
and eventually stay there.
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Divergence

If a sequence does not converge, it is said to diverge. For example:

� an = n diverges to infinity.

� Let an = (−1)n. Then:

a1 = −1, a2 = 1, a3 = −1, a4 = 1, . . .

This sequence does not converge. It keeps jumping between −1 and 1, so:

lim
n→∞

an does not exist.

.

3. Properties of Convergent Sequences

Let an → a and bn → b. Then:

� an + bn → a+ b

� anbn → ab

� If b ̸= 0 and bn ̸= 0 for all n, then an

bn
→ a

b

� |an| → |a|

Also, every convergent sequence is bounded.

4. Examples

Example 1:

an =
2n2 − 3n

3n2 + 5n+ 3

Highest powers dominate:

lim
n→∞

an = lim
n→∞

2n2

3n2
=

2

3

Justification: Divide numerator and denominator by n2:

an =
2n2 − 3n

3n2 + 5n+ 3
=

2− 3
n

3 + 5
n + 3

n2

.

Since
1

n
→ 0 and

1

n2
→ 0 as n → ∞,

we get:

lim
n→∞

an =
2− 0

3 + 0 + 0
=

2

3
.

General Rule: For an = P (n)
Q(n) :

� If degP < degQ, then lim an = 0

� If degP = degQ, then lim an equals the ratio of leading coefficients

� If degP > degQ, then lim an = ∞ or −∞ (divergent)
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Example 2: Geometric and Power Sequences

Geometric sequence:

lim
n→∞

rn =


0, if |r| < 1,

1, if r = 1,

diverges, if |r| ≥ 1 and r ̸= 1.

We can write:

rn = en ln r, for r > 0.

� If 0 < r < 1: then ln r < 0 and n ln r → −∞.

⇒ rn = en ln r → 0.

� If r = 1: then ln r = 0 and

⇒ rn = e0 = 1.

� If r > 1: then ln r > 0 and n ln r → ∞.

⇒ rn = en ln r → ∞.

� If r < 0: then rn diverges and may oscillate, depending on the parity of n.

Power sequence (also called ”dual geometric”):

lim
n→∞

nr =


0, if r < 0,

1, if r = 0,

∞, if r > 0.

� n0 = 1 for all n,

� nr → ∞ if r > 0,

� nr =
1

n−r
→ 0 if r < 0.

Example 3:

Show that

lim
n→∞

n · sin
(
1

n

)
= 1.

As
1

n
→ 0 and lim

x→0

sinx

x
= 1,

we rewrite:

n · sin
(
1

n

)
=

sin
(
1
n

)
1
n

→ 1.

General Rule:

� If limx→0 f(x) = L, then limn→∞ f
(
1
n

)
= L.

� If limx→∞ f(x) = L, then limn→∞ f(n) = L.
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Example 4

If α > 0, then:
lim
n→∞

α1/n = 1.

Let an = α1/n. Then:

ln an =
lnα

n
→ 0.

So,
an = eln an → e0 = 1.

Example 5

The sequence
(
n1/n

)
converges to 1:

lim
n→∞

n1/n = 1.

Let an = n1/n. Then:

ln an =
lnn

n
.

To evaluate the limit, apply L’Hôpital’s Rule to:

lim
n→∞

lnn

n
.

Since both numerator and denominator tend to ∞, we differentiate top and bottom:

lim
n→∞

lnn

n
= lim

n→∞

1/n

1
= 0.

Therefore:
ln an → 0 ⇒ an = eln an → e0 = 1.

5. Monotone Sequences

A sequence {an} is:

� Increasing if an+1 ≥ an for all n

� Decreasing if an+1 ≤ an for all n

� Monotonic if it is either increasing or decreasing

Theorem (Monotone Convergence Theorem): If a sequence is monotonic and bounded, then it
converges.

Example 1:

Let an = 1− 1
n . It is increasing and bounded above by 1, so the sequence an is convergent.

n

an
L = 1limit

Monotone Increasing Sequence
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Explanation:

� The blue points represent terms an of a sequence.

� Each term is greater than or equal to the previous — the sequence is increasing.

� The red dashed line is the horizontal asymptote at L = 1, showing the limit.

� The sequence approaches the limit from below but never exceeds it.

Example 2: Sequence of partial sum

Let an be a sequence of non-negative numbers, meaning that an ≥ 0 for every n ∈ N. The sequence of partial
sums associated with an is defined by:

SN =

N∑
k=1

ak = a1 + a2 + · · ·+ aN .

This means that :

S1 = a1,

S2 = a1 + a2,

S3 = a1 + a2 + a3,

...

Since each term an ≥ 0, adding a new term always makes the total sum stay the same or increase:

SN+1 − SN = aN+1 ≥ 0.

We now consider two possible situations:

� Case 1: The sequence (SN ) is bounded above.
Since SN is increasing and bounded, the Monotonic Convergence Theorem tells us that SN converges
to a finite limit.

� Case 2: The sequence (SN ) is not bounded above.
In this case, the partial sums grow without limit, that is,

lim
N→∞

SN = ∞.

6. Squeeze Theorem

Theorem: Let {an}, {bn}, {cn} be sequences such that:

an ≤ bn ≤ cn for all n ≥ N,

and if limn→∞ an = limn→∞ cn = L, then:
lim
n→∞

bn = L.

Example 1:

Show that limn→∞
sinn
n = 0.

Since −1 ≤ sinn ≤ 1, we have:

− 1

n
≤ sinn

n
≤ 1

n
.

Both bounds go to 0, so by the Squeeze Theorem:

lim
n→∞

sinn

n
= 0.
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Infinite series

1. Introduction

An infinite series is the sum of the terms of a sequence:

∞∑
n=1

an = a1 + a2 + a3 + · · ·

To analyze the convergence of this series, we consider the sequence of partial sums:

SN =

N∑
k=1

ak.

We say that the series
∑∞

n=1 an converges if the limit of the sequence {SN} exists and is finite. In that
case, the value of the infinite sum is defined as:

∞∑
n=1

an = lim
N→∞

SN .

If this limit does not exist or is infinite, the series is said to diverge.

2. Telescoping Series

Evaluate the infinite series:
∞∑

n=1

1

n(n+ 1)
.

We first decompose the general term using partial fractions:

1

n(n+ 1)
=

1

n
− 1

n+ 1
,

and then consider the partial sum:

SN =

N∑
n=1

(
1

n
− 1

n+ 1

)
.

We expand the partial sum:

SN =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·

+

(
1

N
− 1

N+ 1

)
.

After cancellation, only the first and the last term remain:

SN = 1− 1

N+ 1
.
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Taking the limit as N → ∞, we find the sum of the infinite series:

∞∑
n=1

1

n(n+ 1)
= lim

N→∞
SN = lim

N→∞

(
1− 1

N + 1

)
= 1.

The series

∞∑
n=1

1

n(n+ 1)
converges, and its sum is

∞∑
n=1

1

n(n+ 1)
= 1.

General Rule (Telescoping Form):
If a sequence satisfies an = bn − bn+1, then the partial sum telescopes:

SN =

N∑
n=1

an = b1 − bN+1 ⇒
∞∑

n=1

an = b1 − lim
N→∞

bN+1,

provided the limit exists.

Application to the Geometric Series
∑∞

n=0 r
n:

(1− r)

N∑
n=0

rn =

N∑
n=0

(
rn − rn+1

)
= r0 − rN+1 = 1− rN+1.

Dividing both sides by 1− r, we obtain the formula for the partial sum:

N∑
n=0

rn =
1− rN+1

1− r
, r ̸= 1.

Geometric Series Convergence (”r-Test”):

∞∑
n=0

rn converges ⇐⇒ |r| < 1.

Sum Formula:
∞∑

n=0

rn =


1

1− r
, if |r| < 1,

diverges, if |r| ≥ 1.

Example:
∞∑

n=0

(
1

2

)n

=
1

1− 1
2

= 2.

3. Basic Properties

� Linearity:
∞∑

n=1

(an + bn) =

∞∑
n=1

an +

∞∑
n=1

bn

� Multiplication by a constant:
∞∑

n=1

can = c

∞∑
n=1

an
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� Necessary condition for convergence:
If
∑∞

n=1 an converges, then it must be that an → 0 as n → ∞. However, the converse is not true: the
fact that an → 0 does not guarantee convergence of the series.

Counterexample: Let an = 1
n . Then an → 0, but the harmonic series

∞∑
n=1

1

n

diverges.

Justification: The necessary condition for convergence follows from the identity:

SN =

N∑
k=1

ak ⇐⇒ an = Sn − Sn−1, with S0 = 0,

and the fact that if
∑

an converges, then both Sn and Sn−1 converge to the same limit, which forces an → 0.

4. Convergence Tests for Positive Series

We are concerned with series
∑∞

n=1 an, such that an ≥ 0 for all n (positive series).

(a) nth-Term Test

If limn→∞ an ̸= 0, the series diverges.

(b) Comparison Test

If 0 ≤ an ≤ bn and
∑

bn converges, then
∑

an also converges. If
∑

an diverges and bn ≥ an ≥ 0, then
∑

bn
also diverges.

(c) Limit Comparison Test

Let an, bn > 0. If:

lim
n→∞

an
bn

= c > 0,

then either both series converge or both diverge.

(d) Ratio Test

L = lim
n→∞

an+1

an

� If L < 1: the series converges.

� If L > 1 or L = ∞: the series diverges.

� If L = 1: the test is inconclusive.

(e) Root Test

L = lim
n→∞

n
√
an, same conclusions as the Ratio Test
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(f) Integral Test

Let f : [1,∞) → R be a function such that:

� f is continuous,

� f(x) ≥ 0 for all x ≥ 1,

� f is decreasing on [1,∞),

� f(n) = an for all integers n ≥ 1.

Then
∞∑

n=1

an converges ⇐⇒
∫ ∞

1

f(x) dx converges.

Application: The p-Series Test
Consider the series

∞∑
n=1

1

np
, where p > 0.

Let f(x) = 1
xp , which is continuous, positive, and decreasing for x ≥ 1 when p > 0. We apply the integral

test by evaluating ∫ ∞

1

1

xp
dx = lim

t→∞

∫ t

1

1

xp
dx.

Case 1: p ̸= 1 ∫ t

1

1

xp
dx =

[
x1−p

1− p

]t
1

=
t1−p − 1

1− p
.

� If p > 1, then 1− p < 0, so t1−p → 0 as t → ∞, and the integral converges to 1
p−1 .

� If p < 1, then 1− p > 0, so t1−p → ∞, and the integral diverges.

Case 2: p = 1 ∫ t

1

1

x
dx = ln t → ∞ as t → ∞.

So the integral diverges.

Conclusion: ∫ ∞

1

1

xp
dx =

{
Converges, if p > 1,

Diverges, if p ≤ 1.

By the integral test, the same result holds for the series:

∞∑
n=1

1

np
=

{
Converges, if p > 1,

Diverges, if p ≤ 1.

Examples:

�

∞∑
n=1

1

n2
: converges (since p = 2 > 1)

�

∞∑
n=1

1

n
: diverges (harmonic series, p = 1)

�

∞∑
n=1

1√
n
: diverges (since p = 1

2 < 1)
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6. Absolute and Conditional Convergence

� A series
∑

an is said to be absolutely convergent if the series of absolute values
∑

|an| converges.

� A series
∑

an is said to be conditionally convergent if
∑

an converges, but the series
∑

|an|
diverges.

Theorem (Absolute Convergence Implies Convergence): If the series
∑

|an| converges, then the
original series

∑
an also converges.

The converse is not true. That is, a convergent series
∑

an does not necessarily imply that
∑

|an|
converges. A classical example is the alternating harmonic series:

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · ,

which converges conditionally, since
∞∑

n=1

∣∣∣∣ (−1)n+1

n

∣∣∣∣ = ∞∑
n=1

1

n

diverges (harmonic series).

(g) Alternating Series Test (Leibniz Test)

If an > 0, decreasing, and lim an = 0, then:

∞∑
n=1

(−1)n+1an converges

�

∑ (−1)n

n2 : absolutely convergent (use p-series test)

�

∑ (−1)n

lnn : conditionally convergent (use Leibniz test)

�

∑
n!
nn : converges (use ratio or root test)
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Power Series

A real power series centered at x0 ∈ R is an infinite series of the form:

∞∑
n=0

an(x− x0)
n,

where an ∈ R and x ∈ R. If x0 = 0, the series is called a power series centered at the origin.

Radius and Interval of Convergence

Consider the real power series centered at x0 ∈ R:
∞∑

n=0

an(x− x0)
n.

There exists a non-negative number R ∈ [0,∞], called the radius of convergence, such that:

� The series converges absolutely for all x ∈ R such that |x− x0| < R,

� The series diverges for all x ∈ R such that |x− x0| > R.

x

Region of absolute convergence ??
Region of doubtRegion of doubt

DivergenceDivergence
x0

x0 −R x0 +R

The radius of convergence R can be computed using either the Ratio Test or the Root Test. Suppose
one of the following limits exists (possibly infinite):

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ , or L = lim
n→∞

n
√

|an|.

Then the radius of convergence is given by:

R =


1

L
if L ∈ (0,∞),

∞ if L = 0,

0 if L = ∞.

The corresponding interval of convergence is:

� If R = ∞, the series converges absolutely for all x ∈ R; thus, the interval of convergence is R.

� If R ≥ 0, the series converges absolutely on the open interval (x0 −R, x0 +R).

At the boundary points x = x0 −R and x = x0 +R, the behavior of the series is generally uncertain.
Each endpoint must be tested separately: the series may converge conditionally , or it may diverge .
There is no general rule; it depends on the specific form of the series.

15
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Example 1: Geometric Series

Consider the geometric series:
∞∑

n=0

xn = 1 + x+ x2 + x3 + · · · .

This is a power series centered at x0 = 0, with an = 1 for all n.

We apply the ratio test to determine the values of x ∈ R for which the series converges:

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

|x| = |x| (x ̸= 0).

According to the Ratio Test:

� The series converges if |x| < 1,

� The series diverges if |x| > 1,

� The test is inconclusive if |x| = 1.

Thus, the radius of convergence is:

R = 1.

Behavior at the Boundary

We must check convergence manually at the endpoints:

� At x = 1:
∞∑

n=0

1n =

∞∑
n=0

1 = 1 + 1 + 1 + · · · ⇒ diverges.

� At x = −1:
∞∑

n=0

(−1)n = 1− 1 + 1− 1 + · · · ⇒ diverges.

This is the Grandi series, which oscillates and does not converge.

Conclusion:
∞∑

n=0

xn converges if and only if |x| < 1.

Radius of convergence: R = 1

Interval of convergence: (−1, 1)

Example 2: Harmonic-Like Power Series

Consider the series:
∞∑

n=1

xn

n
=

x

1
+

x2

2
+

x3

3
+ · · · .

This is a power series centered at x0 = 0, with an = 1
n .
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Step 1: Apply the Ratio Test

We apply the ratio test to determine for which values of x ∈ R the series converges:

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

n+ 1
· n

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣x · n

n+ 1

∣∣∣∣ = |x|. (x ̸= 0)

Conclusion from Ratio Test:

� The series converges if |x| < 1,

� The series diverges if |x| > 1,

� The test is inconclusive at |x| = 1.

So, the radius of convergence is:

R = 1.

Step 2: Analyze the Boundary |x| = 1

We must test convergence at the endpoints.

� At x = 1:
∞∑

n=1

1

n
= harmonic series ⇒ diverges.

� At x = −1:
∞∑

n=1

(−1)n

n
= −

∞∑
n=1

(−1)n+1

n

This is the alternating harmonic series, which satisfies the conditions of the Alternating Series
Test:

– 1
n is positive and decreasing,

– limn→∞
1
n = 0,

⇒ Converges (conditionally).

Conclusion:

∞∑
n=1

xn

n
converges for x ∈ [−1, 1),

with:

� Radius of convergence: R = 1

� Interval of convergence: [−1, 1)

Example 3: Exponential Series

Consider the series:
∞∑

n=1

xn

n!
=

x

1!
+

x2

2!
+

x3

3!
+ · · · .

This is a power series centered at x0 = 0, with an = 1
n! .
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Step 1: Apply the Ratio Test

We apply the ratio test to determine for which values of x ∈ R the series converges:

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!
xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣ = 0 x ̸= 0.

Conclusion from Ratio Test:

� Since the limit is 0 for all x ∈ R, the series converges absolutely for every real number x.

Conclusion:

� Radius of convergence: R = ∞

� Interval of convergence: (−∞,∞)

This series defines the exponential function:

ex =

∞∑
n=0

xn

n!
.

Example 4: Root Test with a Logarithmic Denominator

Consider the power series:
∞∑

n=2

xn

n log n
.

This is a power series centered at x0 = 0, with coefficients an = 1
n logn for n ≥ 2.

We evaluate:

lim
n→∞

|an|1/n = lim sup
n→∞

(
1

n log n

)1/n

.

To simplify this, consider the logarithm:

ln

((
1

n log n

)1/n
)

= − 1

n
ln(n log n).

We now compute the limit using L’Hôpital’s Rule:

lim
n→∞

− ln(n log n)

n
.

Let f(n) = ln(n log n) and g(n) = n. Since both tend to infinity, we apply L’Hôpital’s Rule:

lim
n→∞

− ln(n log n)

n
= − lim

n→∞

d

dn
[ln(n log n)]

/
d

dn
[n].(n is real number)

Differentiate numerator and denominator:

d

dn
[ln(n log n)] =

1

n log n
· (log n+ 1) =

log n+ 1

n log n
.

So the limit becomes:

− lim
n→∞

log n+ 1

n log n
= 0.

Therefore,

lim
n→∞

(
1

n log n

)1/n

= e0 = 1.



19

Conclusion from the Root Test:

lim
n→∞

|anxn|1/n =
(
lim
n→∞

|an|1/n
)
· |x| = |x|.

So:

� The series converges if |x| < 1,

� The series diverges if |x| > 1,

� The test is inconclusive at |x| = 1.

At x = 1:
We consider the series:

∞∑
n=2

1

n log n
.

To determine convergence, we apply the integral test.
Let

f(x) =
1

x log x
, defined for x ≥ 2.

The function f(x) is:

� positive on [2,∞),

� continuous on [2,∞),

� decreasing for x ≥ 3 (since log x grows slowly).

We evaluate the improper integral: ∫ ∞

2

1

x log x
dx.

Make the substitution u = log x, so du = 1
xdx. Then:∫ ∞

2

1

x log x
dx = lim

t→∞

∫ t

log 2

1

u
du = lim

t→∞
[log u]tlog 2 = ∞.

Since the integral diverges, the integral test implies that the series also diverges:

∞∑
n=2

1

n log n
diverges.

At x = −1:
∞∑

n=2

(−1)n

n log n

This is an alternating series. It converges conditionally by the Alternating Series Test since:

�
1

n logn is positive and decreasing for n ≥ 3,

� limn→∞
1

n logn = 0.

Conclusion:
∞∑

n=2

xn

n log n
converges for x ∈ [−1, 1).

Radius of convergence: R = 1
Interval of convergence: [−1, 1)
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Properties of Power Series

Let

f(x) =

∞∑
n=0

an(x− x0)
n

be a real power series with radius of convergence R > 0. Then the function f has the following important
properties on the open interval (x0 −R, x0 +R):

� Smoothness: The function f is infinitely differentiable on (x0 −R, x0 +R), i.e., all derivatives of
f exist and are continuous on this interval. This follows from term-by-term differentiation being valid
within the radius of convergence.

� Term-by-term differentiation: The derivative of f is obtained by differentiating term-by-term:

f ′(x) =

∞∑
n=1

nan(x− x0)
n−1,

and this series has the same radius of convergence R. The term n = 0 vanishes in the derivative.

� Term-by-term integration: The indefinite integral of f is given by integrating term-by-term:∫
f(x) dx = C +

∞∑
n=0

an
n+ 1

(x− x0)
n+1,

where C is the constant of integration. This series also has radius of convergence R.

� Preservation of convergence: Both differentiation and integration preserve the radius of con-
vergence R. That is, the derived and integrated series converge on the same interval (x0−R, x0+R)
as the original series.

� Analyticity: Within the interval of convergence, the function f is analytic. That is, not only is f
smooth, but it equals its Taylor series expansion centered at x0:

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n.

Analytic Functions

A real function f is called analytic at x0 if there exists a power series
∑

an(x − x0)
n that converges to

f(x) for all x in some neighborhood of x0.
In that case, f has a Taylor expansion:

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n.

Important Notes

� A function can be infinitely differentiable but not analytic (e.g., f(x) = e−1/x2

, with f(0) = 0, has all
derivatives zero at 0, but is not identically zero).

� Power series converge uniformly on compact subintervals of the open interval of convergence.

� Within the interval of convergence, power series can be manipulated like polynomials (term-by-term
addition, multiplication, etc.).
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Representation of Functions by Power Series

Many functions can be expressed as power series within a suitable interval. A function f is said to be
represented by a power series centered at x0 ∈ R if there exists a sequence (an) such that:

f(x) =

∞∑
n=0

an(x− x0)
n for all x in some interval (x0 −R, x0 +R),

where R > 0 is the radius of convergence.

Taylor Series

If f is infinitely differentiable at a point x0, and the power series

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n

converges to f(x) for x ∈ (x0−R, x0+R), then f is said to be analytic at x0. In this case, f is represented
by its Taylor series expansion:

f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n.

Conditions and Notes

� Every function represented by a power series is analytic (infinitely differentiable and equal to its Taylor
series).

� Not every infinitely differentiable function is analytic.

� The radius of convergence R can be found using the ratio or root test on the coefficients.

Common Examples

� Exponential function:

ex =

∞∑
n=0

xn

n!
, for all x ∈ R.

� Geometric series:
1

1− x
=

∞∑
n=0

xn, for |x| < 1.

� Sine and cosine:

sinx =

∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, cosx =

∞∑
n=0

(−1)nx2n

(2n)!
, for all x ∈ R.

� Natural logarithm:

ln(1 + x) =

∞∑
n=1

(−1)n+1xn

n
, for |x| < 1.

� Arctangent:

arctanx =

∞∑
n=0

(−1)nx2n+1

2n+ 1
, for |x| ≤ 1.
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Fourier Series

Fourier series allow us to represent periodic functions as infinite sums of sines and cosines.

1. Periodic Functions

A function f(t) is said to be periodic with period L > 0 if

f(t+ L) = f(t) for all t ∈ R.

Example. Let f(t) = sin(t). Then f is periodic with period L = 2π, because:

f(t+ 2π) = sin(t+ 2π) = sin(t) = f(t).

Note that f(t) = sin(t) also satisfies

f(t+ 4π) = sin(t+ 4π) = sin(t), f(t+ 6π) = sin(t+ 6π) = sin(t), etc.

In fact, sin(t) has period 2nπ for any positive integer n = 1, 2, 3, . . .. However, the smallest positive
period is 2π, which is called the period.

Graphical Interpretation. A function with period L has a graph that repeats itself every L units.
That is, the graph remains unchanged when shifted left or right by L.

1. Sine Function sinx

−2π −π π 2π

−1

1

x

f(x)

23
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Cosine Function: cosx

−2π −π π 2π

−1

1

x

f(x)

Example: Periodic Extension of x2

We define the function:

f(x) = x2, x ∈ (−1, 1),

and extend it to all real numbers by periodicity with period 2:

f(x+ 2) = f(x), for all x ∈ R.

To repeat the shape of x2 from (−1, 1) across the real line, we shift the basic graph by multiples of 2.
This means we “copy and paste” the curve x2 into every interval of length 2.

−10 −8 −6 −4 −2 2 4 6 8 10

1

x

f(x)

Example: Periodic Extension of x

We define the function:

f(x) = x, x ∈ (−1, 1),

and extend it to all real numbers by periodicity with period 2:

f(x+ 2) = f(x), for all x ∈ R.



25

−10 −8 −6 −4 −2 2 4 6 8 10

−1

1

x

f(x)

2. Piecewise Continuous Functions and Jump Discontinuities

A function f is called piecewise continuous on an interval [a, b] if:

� It is continuous on parts of the interval, except at a finite number of points of discontinuity,

� At each point of discontinuity, the left-hand and right-hand limits exist and are finite.

When the two one-sided limits exist but are not equal, the function has a jump discontinuity.

Example: Jump Discontinuity

x

f(x)

c

left limit

right limit

f(c)Jump

The function has a jump at x = c. Both one-sided limits exist but are not equal.

Orthogonality of Trigonometric Functions

The sine and cosine functions are orthogonal on [−π, π]:∫ π

−π

cos(mx) cos(nx) dx =

{
π if m = n ̸= 0,

0 if m ̸= n,

∫ π

−π

sin(mx) sin(nx) dx =

{
π if m = n,

0 if m ̸= n,∫ π

−π

cos(mx) sin(nx) dx = 0 for all m,n.

These orthogonality relations are the foundation of Fourier coefficients.
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3. Fourier Series of a Function

The Fourier series of a function f(x) with period 2L is given by:

f(x) ∼ a0
2

+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
where the Fourier coefficients are:

a0 =
1

L

∫ L

−L

f(x) dx

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx, bn =

1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx

provided that these integrals exist.
The symbol ∼ means that the Fourier series represents an approximation of the function f(x).

In general, the Fourier series of a function f is not exactly equal to f . However, under suitable conditions
on f , the series converges to f(x) in various senses — such as:

� Pointwise convergence at each point (if f is piecewise smooth),

� Uniform convergence on an interval (if f is continuous and periodic),

� Convergence in norm, such as in the L2-sense (i.e., mean-square convergence).

4. Dirichlet’s Theorem (Pointwise Convergence)

Let f(x) be a function of period 2L. Suppose that:

� f is piecewise continuous on [−L,L],

� f ′ is piecewise continuous on [−L,L].

Then the Fourier series of f converges at every point x ∈ R to the average of the left- and right-hand
limits:

f(x−) + f(x+)

2
=

a0
2

+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
where the right-hand and left-hand limits as:

f(x+) = lim
ξ→x+

f(ξ), f(x−) = lim
ξ→x−

f(ξ)

Furthermore, if f is continuous at x, then the Fourier series converges to f(x):

f(x) =
a0
2

+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]

Summary

Let SN (x) denote the N -th partial sum of the Fourier series of a function f with period 2L:

SN (x) =
a0
2

+

N∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
This expression is known as a trigonometric polynomial of degree N .
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� If f is continuous at a point x, then:

lim
N→∞

SN (x) = f(x)

� If f has a jump discontinuity at x, then:

lim
N→∞

SN (x) =
1

2

(
f(x−) + f(x+)

)
That is, the Fourier series converges to the midpoint of the jump.

Example: Fourier Series of a Square Wave

Let f(t) be the square wave of period 2π, defined over one period by:

f(t) = sign(t) =

{
−1, −π < t < 0

1, 0 < t < π

−2π −π π 2π

−1

1

t

f(t)

We now compute the Fourier series of f(t). Since f is piecewise smooth on [−π, π], the Fourier series
converges (by Dirichlet’s Theorem) to:

f(t) ∼ a0
2

+

∞∑
n=1

(an cos(nt) + bn sin(nt))

The Fourier coefficients are given by:

a0 =
1

π

∫ π

−π

f(t) dt, an =
1

π

∫ π

−π

f(t) cos(nt) dt, bn =
1

π

∫ π

−π

f(t) sin(nt) dt

Step 1: Compute a0

a0 =
1

π

(∫ 0

−π

(−1) dt+

∫ π

0

1 dt

)
=

1

π
(−π + π) = 0

Step 2: Compute an

an =
1

π

(∫ 0

−π

(−1) cos(nt) dt+

∫ π

0

cos(nt) dt

)
Since cosine is even:

an =
1

π

(
−
∫ π

0

cos(nt) dt+

∫ π

0

cos(nt) dt

)
= 0
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Step 3: Compute bn

bn =
1

π

(∫ 0

−π

(−1) sin(nt) dt+

∫ π

0

sin(nt) dt

)
Since sine is odd:

bn =
1

π

(
−
∫ π

0

sin(nt) dt+

∫ π

0

sin(nt) dt

)
=

2

π

∫ π

0

sin(nt) dt

Now compute: ∫ π

0

sin(nt) dt =

{
0, if n is even
2
n , if n is odd

Thus:

bn =

{
0, if n is even
4
nπ , if n is odd

The Fourier series of f(t) is:

f(t) ∼
∞∑

n=1n odd

4

nπ
sin(nt)

∼
∞∑

n=0

4

(2n+ 1)π
sin((2n+ 1)t)

Only the sine terms with odd indices appear in the expansion.

5. Symmetry : Even and Odd Functions

A function f is called odd if:

f(−x) = −f(x) for all x ∈ R.

Examples: sgn(x), x, x3, sin(x).

−2 2

−2

2

x

f(x)

Odd Function: f(x) = x3

The graph is symmetric with respect to the origin.

A function f is called even if:

f(−x) = f(x) for all x ∈ R.

Examples: |x|, x2, cos(x).
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−2 2

5

10

x

f(x)

Even Function: f(x) = x2

The graph is symmetric with respect to the y-axis.

Even–Odd Decomposition of a Function

Every function f(x) defined on a symmetric interval [−L,L] can be uniquely written as:

f(x) = feven(x) + fodd(x)

With:

feven(x) =
f(x) + f(−x)

2
, fodd(x) =

f(x)− f(−x)

2

These satisfy:

� feven is even,

� fodd is odd,

� Their sum gives f(x) exactly.

Example: Decompose f(x) = ex

Let f(x) = ex. Then:

feven(x) =
ex + e−x

2
= cosh(x) (even part)

fodd(x) =
ex − e−x

2
= sinh(x) (odd part)

So:
ex = cosh(x) + sinh(x)

Even and Odd Decomposition in Fourier Series

According to Dirichlet’s Theorem, any function f(x) (under suitable conditions) can be written as the sum
of an even and an odd function. This is reflected in the structure of the Fourier series:

f(x) ∼ a0
2

+

∞∑
n=1

an cos
(nπx

L

)
︸ ︷︷ ︸

even part

+

∞∑
n=1

bn sin
(nπx

L

)
︸ ︷︷ ︸

odd part

� The even part consists of cosine terms and the constant term. Since cosine is even, this part is
symmetric about the y-axis.

� The odd part consists of sine terms. Since sine is odd, this part is symmetric about the origin.
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Consequence: Uniqueness of Even–Odd Decomposition

Since the Fourier series naturally separates into an even part (cosine terms) and an odd part (sine terms),
we can make the following conclusions:

� If f is even, then its odd part must be identically zero. This happens if and only if all sine coefficients
vanish:

bn = 0 for all n ≥ 1.

Thus, the Fourier series contains only cosine terms (and possibly a0).

� If f is odd, then its even part must be zero. This occurs only when all cosine coefficients vanish,
including the constant term:

a0 = 0, an = 0 for all n ≥ 1.

Therefore, the Fourier series contains only sine terms.

Summary:

� If f is even, then all sine coefficients vanish: bn = 0 for all n ≥ 1.

� If f is odd, then all cosine coefficients vanish (including the constant term): a0 = 0, an = 0 for all
n ≥ 1.

Common Fourier Series

� Square Wave (odd function):

f(x) =

{
1, 0 < x < π,

−1, −π < x < 0,
⇒ f(x) ∼ 4

π

∞∑
n=1
n odd

sin(nx)

n

This is a classic example of a piecewise constant, odd function.

� Sawtooth Wave (odd function):

f(x) = x on [−π, π] ⇒ f(x) ∼ −2

∞∑
n=1

(−1)n

n
sin(nx)

This function is odd and continuous, but non-smooth at the endpoints.

� Absolute Value (even function):

f(x) = |x| on [−π, π] ⇒ f(x) ∼ π

2
+

∞∑
n=1

(−1)n4

πn2
cos(nx)

Being even, the Fourier series contains only cosine terms.

� Quadratic Function (even function):

f(x) = x2 on [−π, π] ⇒ f(x) ∼ π2

3
+

∞∑
n=1

4(−1)n

n2
cos(nx)

Since x2 is even, the series contains only cosine terms. This is a smooth function, so the series converges
rapidly.
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Remarks

� Fourier series enable efficient approximation of functions by truncating to a finite number of terms.

� They are crucial in solving partial differential equations (e.g., heat, wave, and Laplace equations).

� Parseval’s identity relates the sum of squares of the coefficients to the L2-norm of the function:

1

π

∫ π

−π

|f(x)|2dx =
a20
2

+

∞∑
n=1

(
a2n + b2n

)
.
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Fourier Integrals

Motivation

While Fourier series represent periodic functions as sums of sines and cosines, many functions in practice are
defined on the entire real line and are not periodic. In such cases, we use the Fourier integral to represent
non-periodic functions using integrals rather than infinite sums.

Fourier Integral Representation

Let f(x) be a real-valued function defined on (−∞,∞). Suppose that f satisfies the following conditions:

(i) f and f ′ are piecewise continuous on every bounded interval of R,

(ii) f is absolutely integrable on R, i.e.,∫ ∞

−∞
|f(x)| dx converges (as an improper integral).

Then the Fourier integral representation of f is given by:

f(x) =
1

π

∫ ∞

0

[A(λ) cos(λx) +B(λ) sin(λx)] dλ, (1)

where the Fourier cosine and sine transforms are defined as:

A(λ) =

∫ ∞

−∞
f(t) cos(λt) dt, B(λ) =

∫ ∞

−∞
f(t) sin(λt) dt.

The identity (1) holds at every point x ∈ R where f is continuous. If x is a point of discontinuity, the
Fourier integral converges to the average of the left- and right-hand limits:

1

2

(
f(x−) + f(x+)

)
=

1

π

∫ ∞

0

[A(λ) cos(λx) +B(λ) sin(λx)] dλ.

Symmetry

� If f is even, then:

f(x) =

∫ ∞

0

A(ω) cos(ωx) dω.

� If f is odd, then:

f(x) =

∫ ∞

0

B(ω) sin(ωx) dω.
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Example: Rectangular Pulse Function

Define:

f(x) =

{
1, |x| ≤ a,

0, |x| > a.

Then the Fourier transform is:

F (ω) =
1

2π

∫ a

−a

e−iωtdt =
sin(aω)

πω
,

and

f(x) =

∫ ∞

−∞

sin(aω)

πω
eiωx dω.

This is the classical sinc function representation.



First Order Differential Equations

Introduction

In this chapter, we study methods for solving first-order differential equations. The most general form
is:

dy

dt
= f(y, t)

There is no general formula for solving this equation. Instead, we explore several special cases.

Topics Covered

� Separable and linear equations

� Exact equations and integrating factors

� Direction fields and qualitative behavior

� Existence and uniqueness theorems

� Applications in population models, mixing problems, and Newton’s law of cooling

Linear First-Order Differential Equations

A linear first-order differential equation has the form:

dy

dt
+ p(t)y = g(t)

where p(t) and g(t) are continuous.

Solution Method

1. Compute the integrating factor:
µ(t) = e

∫
p(t) dt

2. Multiply the entire equation by µ(t):

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)g(t)

3. Recognize the left side as the derivative of a product:

d

dt
[µ(t)y(t)] = µ(t)g(t)

4. Integrate both sides:

µ(t)y(t) =

∫
µ(t)g(t) dt+ C

35
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5. Solve for y(t):

y(t) =
1

µ(t)

(∫
µ(t)g(t) dt+ C

)
Summary

The general solution is:

y(t) =
1

e
∫
p(t) dt

(∫
e
∫
p(t) dtg(t) dt+ C

)
However, it’s often easier to use the process above rather than memorizing the formula.

Example1

Solve the IVP:

ty′ + 2y = t2 − t+ 1, y(1) =
1

2

Step 1: Standard form.
Divide by t (assume t > 0):

y′ +
2

t
y = t− 1 +

1

t

Step 2: Integrating factor.
µ(t) = e

∫
2
t dt = e2 ln |t| = t2

Step 3: Multiply through by µ(t) = t2:

t2y′ + 2ty = t3 − t2 + t ⇒ d

dt
(t2y) = t3 − t2 + t

Step 4: Integrate both sides.

t2y =

∫
(t3 − t2 + t) dt =

1

4
t4 − 1

3
t3 +

1

2
t2 + C

Step 5: Solve for y(t).

y(t) =
1

4
t2 − 1

3
t+

1

2
+

C

t2

Step 6: Apply initial condition.

y(1) =
1

4
− 1

3
+

1

2
+ C =

1

2
⇒ C =

1

12

Final Solution:

y(t) =
1

4
t2 − 1

3
t+

1

2
+

1

12t2

Example 2

Solve the initial value problem:

cos(x)y′ + sin(x)y = 2 cos3(x) sin(x)− 1, y
(π
4

)
= 3

√
2, 0 ≤ x <

π

2

Dividing both sides by cos(x), we obtain:

y′ + tan(x)y = 2 cos2(x) sin(x)− sec(x)

The integrating factor is:
µ(x) = e

∫
tan(x) dx = sec(x)
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Multiplying the equation by the integrating factor:

sec(x)y′ + sec(x) tan(x)y = 2 sec(x) cos2(x) sin(x)− sec2(x)

d

dx
[sec(x)y] = 2 cos(x) sin(x)− sec2(x)

Integrating both sides:

sec(x)y =

∫
(2 cos(x) sin(x)− sec2(x)) dx =

∫
sin(2x) dx−

∫
sec2(x) dx

sec(x)y = −1

2
cos(2x)− tan(x) + C

Solving for y(x):

y(x) = cos(x)

(
−1

2
cos(2x)− tan(x) + C

)

y(x) = −1

2
cos(x) cos(2x)− cos(x) tan(x) + C cos(x)

y(x) = −1

2
cos(x) cos(2x)− sin(x) + C cos(x)

Using the initial condition y
(
π
4

)
= 3

√
2, we have:

3
√
2 = −1

2
·
√
2

2
· 0−

√
2

2
+ C ·

√
2

2
⇒ 3

√
2 = −

√
2

2
+ C ·

√
2

2
⇒ C = 7

Thus, the solution is:

y(x) = −1

2
cos(x) cos(2x)− sin(x) + 7 cos(x)

Separable Equations

We now consider nonlinear first-order differential equations, starting with separable equations. A differential
equation is separable if it can be written as:

N(y)
dy

dx
= M(x)

This means all y-terms are with dy and all x-terms are with dx. Rearranging gives:

N(y) dy = M(x) dx

We solve by integrating both sides: ∫
N(y) dy =

∫
M(x) dx

This gives an implicit solution, which may or may not be solvable for an explicit solution y = y(x).

Be aware of the interval of validity: the solution is only valid where it is defined (no division by zero,
negative logs, etc.).

Most separable equations can be solved using this straightforward technique. We begin with a simple
example to illustrate the method.
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Example 1

Solve the differential equation:
dy

dx
= 6y2x, y(1) =

1

25

This is a separable equation:
y−2dy = 6x dx

Integrating both sides: ∫
y−2dy =

∫
6x dx ⇒ −1

y
= 3x2 + C

Apply the initial condition y(1) = 1
25 :

− 1

1/25
= 3(1)2 + C ⇒ −25 = 3 + C ⇒ C = −28

So the solution is:

−1

y
= 3x2 − 28 ⇒ y(x) =

1

28− 3x2

Interval of Validity:
To avoid division by zero, we require:

28− 3x2 ̸= 0 ⇒ x ̸= ±
√

28

3
≈ ±3.055

The valid intervals are:

(−∞,−
√
28/3), (−

√
28/3,

√
28/3), (

√
28/3,∞)

Since the initial condition is at x = 1, the correct interval of validity is:

−
√

28/3 < x <
√
28/3

Note: With different initial conditions, the solution remains the same, but the interval of validity changes:

� If y(−4) = − 1
20 , then the interval is (−∞,−

√
28/3)

� If y(6) = − 1
80 , then the interval is (

√
28/3,∞)

Example 2

Solve the IVP:
dy

dx
=

3x2 + 4x− 4

2y − 4
, y(1) = 3

This is a separable equation. Rearranging and integrating:

(2y − 4)dy = (3x2 + 4x− 4)dx∫
(2y − 4) dy =

∫
(3x2 + 4x− 4) dx ⇒ y2 − 4y = x3 + 2x2 − 4x+ C

Apply the initial condition y(1) = 3:

32 − 4(3) = 13 + 2(1)2 − 4(1) + C ⇒ 9− 12 = 1 + 2− 4 + C ⇒ −3 = −1 + C ⇒ C = −2

So the implicit solution is:
y2 − 4y = x3 + 2x2 − 4x− 2
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Solve explicitly using the quadratic formula:

y =
4±

√
16 + 4(x3 + 2x2 − 4x− 2)

2
= 2±

√
x3 + 2x2 − 4x+ 2

Use the initial condition to determine the correct sign:

y(1) = 2±
√
1 + 2− 4 + 2 = 2±

√
1 = 2± 1 ⇒ y(1) = 3 ⇒ use +

Thus, the explicit solution is:

y(x) = 2 +
√
x3 + 2x2 − 4x+ 2

Interval of Validity:
We require the argument of the square root to be non-negative:

x3 + 2x2 − 4x+ 2 ≥ 0

Graphing, the real root is approximately x ≈ −3.36523, so the interval of validity is:

x ≥ −3.36523

which contains x = 1, satisfying the initial condition.

Exact Equations

We now explore a new class of first-order differential equations: exact equations. Before diving into the
solution method, we demonstrate the concept using an example.

Example 1

2xy − 9x2 + (2y + x2 + 1)
dy

dx
= 0

Assume a function Ψ(x, y) exists such that:

Ψ(x, y) = y2 + (x2 + 1)y − 3x3

Then,
∂Ψ

∂x
= 2xy − 9x2,

∂Ψ

∂y
= 2y + x2 + 1

So the equation becomes:
d

dx
[Ψ(x, y(x))] = 0 ⇒ Ψ(x, y) = C

Implicit solution:
y2 + (x2 + 1)y − 3x3 = C

General Form

A differential equation is exact if:

M(x, y) +N(x, y)
dy

dx
= 0

and there exists a function Ψ(x, y) such that:

∂Ψ

∂x
= M,

∂Ψ

∂y
= N

Then the solution is:
Ψ(x, y) = C

To test for exactness:
∂M

∂y
=

∂N

∂x
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Example 2:

2xy − 9x2 + (2y + x2 + 1)
dy

dx
= 0, y(0) = −3

M = 2xy − 9x2 ⇒ My = 2x, N = 2y + x2 + 1 ⇒ Nx = 2x

Exact equation.
Integrate M with respect to x:

Ψ(x, y) =

∫
(2xy − 9x2) dx = x2y − 3x3 + h(y)

Differentiate with respect to y:

∂Ψ

∂y
= x2 + h′(y) = 2y + x2 + 1 ⇒ h′(y) = 2y + 1 ⇒ h(y) = y2 + y

So:
Ψ(x, y) = x2y − 3x3 + y2 + y

Implicit solution:
x2y − 3x3 + y2 + y = C

Apply initial condition y(0) = −3:
0 + 9− 3 = C ⇒ C = 6

y2 + (x2 + 1)y − 3x3 = 6

Solve using quadratic formula:

y = −(x2 + 1)±
√
(x2 + 1)2 + 12x3 + 24

2

Choose − sign based on initial condition:

y(x) = −(x2 + 1)−
√
x4 + 12x3 + 2x2 + 25

2

Interval of validity:
x4 + 12x3 + 2x2 + 25 ≥ 0 ⇒ x ≥ −1.396911133

Example 3

2xy2 + 4 = 2(3− x2y)y′, y(−1) = 8

Rewriting:
2xy2 + 4 + 2(x2y − 3)y′ = 0

M = 2xy2 + 4, N = 2x2y − 6

My = 4xy, Nx = 4xy ⇒ Exact

Integrate N w.r.t. y:

Ψ(x, y) =

∫
(2x2y − 6)dy = x2y2 − 6y + h(x)

Differentiate w.r.t. x:

∂Ψ

∂x
= 2xy2 + h′(x) = 2xy2 + 4 ⇒ h′(x) = 4 ⇒ h(x) = 4x

Ψ(x, y) = x2y2 − 6y + 4x
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Implicit solution:
x2y2 − 6y + 4x = C

Apply initial condition:
64− 48− 4 = C ⇒ C = 12

x2y2 − 6y + 4x− 12 = 0

Solve for y:

y =
6±

√
36 + 48x2 − 16x3

2x2
= 3±

√
9 + 12x2 − 4x3

x2

Use initial condition to choose “+”:

y(x) = 3 +

√
9 + 12x2 − 4x3

x2

Interval of validity:

x ̸= 0, 9 + 12x2 − 4x3 > 0 ⇒ x ∈ (−∞, 0) since x = −1 is valid

(−∞, 0)


