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Sequences

1. Definition of a Sequence

A sequence is a function from the natural numbers N to the real numbers
R. It is usually written as:

{an}o2 = a1, a9,as, . ..

Each term a,, is called the nth term of the sequence.

Examples

o anzii{l,%,%,...}

e a,=(—1)"={-1,1,-1,1,... }

e a,=n*= {1,4,9,16,...}

2. Convergence of Sequences
A sequence {a,} converges to a real number L if:
Ve >0, 9N € N such that n > N = |a, — L| < e.

We denote this as lim,, , a, = L, or simply a,, — L.

Geometric Interpretation:

To visualize this definition, we draw a horizontal band of width 2¢ centered
at L. This band represents the e-neighborhood of the limit. The key idea is
that, while a few early terms may fall outside this band, eventually all terms
of the sequence lie inside it.



The dashed line at y = L shows the limit of the sequence (a,). The two
dashed lines at y = L + ¢ and y = L — ¢ form a horizontal band around L,
called the e-neighborhood. This band represents a tolerance zone: how close
the sequence terms must be to the limit. As shown, while a few early terms
lie outside this band, from a certain index /N onward, all terms lie within it
— that is, they satisfy |a, — L| < e. This illustrates the formal definition of
convergence: the terms of the sequence get arbitrarily close to the limit and
eventually stay there.

Divergence
If a sequence does not converge, it is said to diverge. For example:
e a, = n diverges to infinity.
e Let a, = (—1)". Then:
ap=—1,as=1, a3=-1, ay =1, ...

This sequence does not converge. It keeps jumping between —1 and 1,
SO:

lim a,, does not exist.
n—oo

3. Properties of Convergent Sequences

Let a,, — a and b,, — b. Then:
e a,+b,—>a+b

e a,b, — ab



a

o If b # 0 and b, # 0 for all n, then §* — ¢
o |an| = |al

Also, every convergent sequence is bounded.

4. Examples

Example 1:

2n% — 3n
a, =
3n2+5n+3

Highest powers dominate:

. . 2n? 2
lim a, = lim — = —
n—00 n—oo 3n2 3

Justification: Divide numerator and denominator by n?:

2n? — 3n 2—%
ay = = :
3nt4+5n+3 3+2+ 3
Since
1 1
——0 and — —0 asn— oo,
n n
we get:
: 2—-0 2
lim a, = —— = —.
n—00 3+0+0 3

General Rule: For q, = %:

o If deg P < deg @, then lima, =0

o If deg P = deg (), then lim a,, equals the ratio of leading coefficients

o If deg P > deg @, then lima,, = co or —oo (divergent)



Example 2: Geometric and Power Sequences

Geometric Sequences

Let (a,) be the geometric sequence a,, = " for a fixed real r and n € N.
Then

0, if |r| <1,
1, if =1,

7}1_{21() r" = 4 does not exist (oscillates between +1), if r = —1,
—+00, if r>1,

\diverges (unbounded and sign-alternating), if r < —1.

1) Case: r > 0. For r > 0, we may write

7’” — enlnr.

e If0 <r < 1,thenlnr < 0, hence nlnr — —oo and thus r” = """ — 0.
e If r =1, then r" =1 for all n, so limr"” = 1.

o If r > 1, then Inr > 0, hence nlnr — 400 and r" = "™ — 400
(diverges).

2) Case: r < 0. Write r = —s with s = |r| > 0. Then
" =(—=1)"s" and [r"|=s".
o If -1 <r <0, then 0 < s < 1. From the positive-base case, s — 0.

Since |r"| = s" — 0, we have —s" < r" < §" for all n, so by the squeeze
theorem r" — 0.

o If r=—1 (i.e., s =1), then " = (—1)" so the even subsequence equals
1 and the odd subsequence equals —1. The two subsequences have
different limits, hence lim 7" does not exist (oscillation).

e If r < —1, then s = |r| > 1 and s" — oco. Consequently |r"| = s" —
oo while the factor (—1)" makes the signs alternate. The sequence is
unbounded and has no limit.

This completes the classification.



Power sequence (also called ”dual geometric”):

0, ifr<o,
limn" =<1, ifr=0,
n—o0
oo, ifr>0.
e n¥ =1 for all n,
e n — ooif r >0,
1 .
o nT:T%OIfT<O.
n’f’

Example 3:

Show that .
lim n - sin (—) = 1.
n—00 n
As ] )
— =0 and lim PR 1,
n z—0
we rewrite: X
1 sin (=
n-sin(—) :mf<71>—>1.
n n
General Rule:
o If lim, ,o f(x) =L, then lim, , f (%) = L.
o If lim, .o f(z) =L, then Ilim, o f(n)=1L
Example 4
If a > 0, then:

lim o!/™ = 1.
n—oo

Let a, = o!/™. Then:
In o
Ina, = — — 0.
So,

a, = e — ¥ =



Example 5

The sequence (nl/ ”) converges to 1:

lim n'/" = 1.
n—oo

Let a, = n'/". Then:

Inn
n

To evaluate the limit, apply L’Hopital’s Rule to:

o Inn
im —.
n—,oo M

Since both numerator and denominator tend to oo, we differentiate top

and bottom:
1 1
lim 27— i 17 )
n—oo n n—oo

Therefore:
Ina, -0 = a,=e"" 5 =1.

5. Monotone Sequences
A sequence {a,} is:
e Increasing if a,,1 > a, for all n
e Decreasing if a, 1 < a, for all n
e Monotonic if it is either increasing or decreasing
Theorem (Monotone Convergence Theorem): If a sequence is mono-

tonic and bounded, then it converges.

Example 1:

Let a, =1 — % It is increasing and bounded above by 1, so the sequence a,,
is convergent.



a’?’l
lamat - - .. L=1
Monotone Increasing Sequence
n
Explanation:

e The blue points represent terms a,, of a sequence.

e BFach term is greater than or equal to the previous — the sequence is
increasing.

e The red dashed line is the horizontal asymptote at L = 1, showing the
limit.

e The sequence approaches the limit from below but never exceeds it.

Example 2: Sequence of partial sum

Let a, be a sequence of non-negative numbers, meaning that a,, > 0 for every
n € N. The sequence of partial sums associated with a,, is defined by:

N
SN:Zak:al—l—ag—i—---—i—aN.

k=1
This means that :
Sl = ay,
Sy = a1 + ag,

S3 = a; + as + as,

Since each term a, > 0, adding a new term always makes the total sum stay
the same or increase:
Sny1 — Sy =an41 > 0.

We now consider two possible situations:
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e Case 1: The sequence (Sy) is bounded above.
Since Sy is increasing and bounded, the Monotonic Convergence The-
orem tells us that Sy converges to a finite limit.

e Case 2: The sequence (Sy) is not bounded above.
In this case, the partial sums grow without limit, that is,

lim Sy = oo.
N—oo

6. Squeeze Theorem

Theorem: Let {a,},{b,},{c.} be sequences such that:
a, <b, <c,forall n > N,
and if lim,,_, a, = lim,,_.o, ¢,, = L, then:

lim b, = L.

n—oo

Example 1:

sinn =0

Show that lim,,_,~
Since —1 < sinn < 1, we have:

Both bounds go to 0, so by the Squeeze Theorem:

. sinn
lim = 0.
n—oo N

Exercises

Exercise 1

Decide whether the following sequences converge or diverge; if they converge,
find the limit:

B 5 n Inn

en’

Qn,
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0.4 Y S
0.2 | Ty =
] " Y= R
70 5 30
02|
04 |

Figure 1: Points y, = sinn/n squeezed between y = £1/x toward 0.

Solution

We analyze each sequence separately.

n
]. n —_— —.
1) an=—2 5
Consider the function f(z) = —f Then a, = f(n). As z — oo, this is an

indeterminate form . By L’Hopital’s rule,

lim5—x: limézo.
r—o00 el r—00 ¥
Hence,
lim a, = 0.
n—o0
2
n
2) b, = :
(2) 2" +1 ,
Define f(x) = ‘ As ¥ — oo, this is of the form 2. Applying

2r +1
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L’Hopital’s rule twice:

2

) T . 2 ,
lim = lim = lim ———— = 0.
=00 2% +1  2502%In2 200 (In2)227
Therefore,
lim b, = 0.
n—od
Inn
3) cp=——.
@ =St
Consider f(x) = DY This is again an > form. By L’Hopital’s rule:
x
1 1
lim 2% — 3 2% — g
T—00 I Rl |
Thus,
lim ¢, = 0.
n—oo

Exercise 2
Discuss the convergence of the following sequences:

(i) (=1.2)"

(i) 5

cos?(n)
37’L

(iii)

) An® 4+ 5n + 1
(iv)
2n3 +n?2 +5

(v) (1 + %)n

1/n

(vi) n
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Solution
(i) a, = (—1.2)". This is a geometric sequence with common ratio r = —1.2.
For a geometric sequence a,, = r":

rl<1 =a,—0,

7| =1 = a, oscillates or is constant,

7| >1 = la,| — oo (diverges).

Since |r| = 1.2 > 1, the sequence diverges.

1 1
(i) b, = o = (=)™ This is a geometric sequence with common ratio

r = —1.2. Therfore we have
b, — 0.

cos?(n)

(iii) ¢, = . The numerator satisfies 0 < cos?(n) < 1, while the

denominator grows without bound as 3" — oco. Therefore,

1

By the squeeze theorem, ¢, — 0.

4n3 + 5 1
(iv) d, = worongt 2 Dividing numerator and denominator by n?:
2n3 +n%+5
P et N S
1\n ,
(V) e, = (1 + —) . Take logarithms:
n
In(1+1/n)
In(e,) =nin(1+1) = =200
n(e,) =nln(1+ /n
Let z = 1/n — 0%. Then
In(1
lim In(e,) = lim In(1 +2) =1
n—00 z—0t T

Thus lim,, . e, = e.
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(vi) f, = n'/". Take logarithms:

B Inn

In(f,) =
As n — oo, this is . By L’Hopital’s rule:

1 1
lim B ME
r—00 X r—00 1

So In(f,,) — 0, which implies f, — e’ = 1.

Exercise 3

Decide whether the following sequences converge or diverge; if they converge,
find the limit:

a, = vVn+1—+/n, b, n n

Solution

(1) a,=vn+1—+n.

Rationalize the difference:

(Vn+1—vn)(vn+14++yn) (n+1)—n 1

fin NS T Vntl+vn Vati+n

Hence

1 1
< >
Vn+14+/n = 2¢y/n nocx

so by squeeze theorem lim a, = 0.
n—oo

n? n?

(2) b, = — .
2n — 1 2n + 1
Combine the fractions:

. 11 _ ,(2n+1)—(@2n—1)  2n?
" 2n—1 2n+1

0<a, = 0,

(2n—1)2n+1)  4n2 -1

Therefore

) X 2n?
Jm by =l e =

2 1
4 2



Infinite series

1. Introduction

An infinite series is the sum of the terms of a sequence:

(e.¢]

Zan:a1+a2+a3—|—---

n=1

To analyze the convergence of this series, we consider the sequence of par-

tial sums:
N

SN = Zak.

k=1
We say that the series >, a,, converges if the limit of the sequence {Sy}
exists and is finite. In that case, the value of the infinite sum is defined as:

o0

Zan = lim Sy.

n=1

If this limit does not exist or is infinite, the series is said to diverge.

2. Telescoping Series

Evaluate the infinite series:
- 1
; n(n—+1)
We first decompose the general term using partial fractions:

1 1 1

nn+1) n n+1
15
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and then consider the partial sum:

After cancellation, only the first and the last term remain:

1
N+1

Sy=1

Taking the limit as N — oo, we find the sum of the infinite series:

- 1 1
—— = 1i = i 1— = 1.
>t = Jim Sy = i (10 1)

n=1
0 ¢
: 1 : :
The series E ——— converges, and its sum is
“—~ n(n+1)

=~ 1
RS

n=1

General Rule (Telescoping Form):

If a sequence satisfies a,, = b,, — b, 1, then the partial sum telescopes:

N 00
Sy= an=bi—bya = Y ay=b— lim by,

provided the limit exists.



Exercise

Evaluate the series
- 1
nZ:?) n(n+1)

First, we must establish that the series converges.

from the previous example,

i 1 N 1 N 1 N
nin+1) 1-2 2.3 3.4

=1

3

Hence
=~ 1 1 1
~n(n+1) 3 115"
1 1 1
:(1 223731 15"
= 1 1 1
:nz_;n(n—i—l)_ 12723
:1_<1_|_1)_
2 6
Compute explicitly with a common denominator 6
I 3 I 1 r 1 3
276 66 © 276 6
So .
s L, 2 [1
“~n(n+1) 3 13

N N
1_Tzrnzz '—7’”+1)

= (" =)+ (!

0 _ pN+L_ 1 _ .N+1

17

By recalling the result

+ (TN . 7”N+1)
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Dividing both sides by 1 — r, we obtain the formula for the partial sum:

N 1 —TN+1

r'=—— r#l
1—7r
n=0

Geometric Series Convergence (”r-Test”):

o
Zr” converges <= |r| < 1.
n=0

Sum Formula:

1
- : if |r] <1,
ZT” =< 1-r if |r|
n— diverges, if |r| > 1.

Example:

n=0

3. Basic Properties

e Linearity:

o0 o0 o0
Z an, + by) Zan—l—an
n=1 n=1 n=1

e Multiplication by a constant:
o (o.@]
S o= e
n=1 n=1

Exercise

Evaluate the series

oo

2n+1 o0 on 4 3n
(a) Zgn 27 (b) 5n )

Il
o

n=0 n



o0 2n+1
(a) Z 3n—2 )
=0

n=
Rewrite the general term as a geometric term:

2n+1 2n+1 32 2n+1 on <2>n

= =9 — 18- =18
gn—2 " 3n 3" 37 3

Hence

f; on+1 Z (%)n_18i<§>n

n=0

The ratio is 7 = £ with [r| < 1, so

- 1 = /2\" 1 1
S = - z@:l_gzizg.
3 3

n=0

Therefore

b) Z 2n+3”.

By hnearlty, split the series into two:

S7E-50) 56

n=0 n=0

Fach is a geometric series with ratios r; = g
|7;] < 1, so they converge and

=, /2\" 1 5 = /3\" 1
Z<5>:1_§:§’ 2(3)21_32

n=0 n=0
Therefore,
2" 4+ 3" 5+5_10 15_25
5n 3 2 6 6 |6

19
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Necessary condition for convergence

0
If the series Z a, converges, then

n=1

lim a, = 0.
n—oo

The converse is false: having a, — 0 does not guarantee that the series
converges.

Why? Let the partial sums be S, := Y ,_; ax. Then
Sp—=Sp1=(a+-+a,) — (a1 +ay+-+a,1)=a, (n>2).

If > a, converges, the sequence (S,) converges to the limit S (S =
> > | ay). Hence

lim a, = lim (S, — S,-1) = lim S, — lim S, ;1 =5 -5 =0.

n—oo n—oo n—oo n—oo

4. Convergence Tests for Positive Series

We are concerned with series >~ | a,, such that a, > 0 for all n (positive
series).

(a) n*®-Term Test

If lim a, # 0 (or the limit does not exist), then the series Y ° | a, diverges.
n—o0

Examples.

1. a, = 1. Here lim, ,oca, = 1 # 0, so Z;;O:ll diverges. Partial sums:
51:1, 52:2, 53:3,..., Sy =N — .

2. a, = (—1)". The limit lim, ,(—1)" does not ezist (terms oscillate).
Partial sums: S = —1, Sy =0, S3=—1, S, =0,...; (Sy) does not
converge, so the series diverges.
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3. Consider

By the n''-term test:

: n . 1
nh—{gon—l—l_nh—)rgol—ki_l#(),

so the series diverges.

Remark (why this test is only one-way). The condition a, — 0 is

necessary but not sufficient: for example, a, = — — 0 but the harmonic
n

: I
series Y °, — diverges.
n

(b) Integral Test
Let f:[1,00) — R be a function such that:

e f is continuous,

o f(z)>0forall x>1,

e f is decreasing on [1, 00),

e f(n) = a, for all integers n > 1.

Then

(0. ¢]

(0.9]
Zan converges < / f(z)dx converges.
1

n=1

Application: The p-Series Test
Consider the series

o0
1

E —,  Wwhere p > 0.
np

n=1

Let f(x) = #, which is continuous, positive, and decreasing for x > 1 when
p > 0. We apply the integral test by evaluating

* 1 b
/ —dx = lim —dx.
1

xP t—oo J1 P
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Case 1: p#1

‘1 [fplf_ﬂp—l

—dx = = .
Lo l—pj; 1-p

e If p>1,thenl—p < 0,s0tl"? — 0 ast — oo, and the integral

converges to p%l.

o If p<1,then1—p >0, sot'” — oo, and the integral diverges.

Case 2: p=1
|
/—dx:lnt — 00 ast— oo.
l.flf

So the integral diverges.

Conclusion:

—dx =
xP

/OO 1 Converges, if p > 1,
1 Diverges, if p < 1.

By the integral test, the same result holds for the series:
i 1 JConverges, ifp>1,
—~ np B if p <1.

Diverges,

Examples:

. converges (since p =2 > 1)

[ ]
NE
3m| —_

S
l
_

[ ]
WK
SEpe

: diverges (harmonic series, p = 1)

i
I

: diverges (since p = 3 < 1)

S
I
—

o
Sl
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(c) Comparison Test

If 0 <a, <b,and > b, converges, then > a, also converges. If > a,
diverges and b, > a,, > 0, then >_ b, also diverges.

Let . .
= — b, = > 1).
. (n=1)

== >
n

Then 0 < a, < b, since n®> + 1 > n? The series > .7 b, = > 1/n* + 1

converges, hence by the Comparison Test,

an

=1
Z ROR converges.
n=1

(d) Limit Comparison Test
Let a,,b, > 0. If

then either both ) a, and >_ b, converge, or both diverge.
Method (quick).

e Pick a comparison series > b, you already know (typically a geometric
or p-series).
an

Compute L = lim —.
n—oo b,

If 0 < L < 00, the two series have the same behavior.

If L =0 and > b, converges, then > a, converges.

If L =00 and ) b, diverges, then > a, diverges.

Examples: rational terms (compare with a p-series)

Example 1 (convergent).

i2n3+5
— Ond +1
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Compare with Y

2n3 +5
O +1 . 2n°+5n? 2
m 1/n2 im o1 o € (0:%0)
Since ) # converges, the given series converges.
Example 2 (divergent).
i n+4
“— 3n* + 1
Compare with > 4:
m+4
2 n? + 4 7
lim Sn-+1 _ hmu:_>0_
n—oo  1/m n—oo 3n? + 1 3

Since Y 4 diverges, the given series diverges.

Examples: comparison with a geometric series

Example 3 (convergent).

i 3"+ 92
a a, = .

Compare with b,, = (%)n

3"+ 2
no . 6" . @B3r+2)2n 6" 4227
lim 2% = fim O 1+n1 = hmgz 11m+—:
n—00 bn n—00 (5) n—oo 6" 4+ 1 n—oo O™ 4+ 1

. n
Since Y- (3)" converges, Y a, converges.

Example 4 (divergent).

ch, Cp = 8n5; 1.
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Compare with d,, = (%)n:

8" —1

lim < = Tim — 30— = lim (1 &) = 1.
n—oo d,, n—00 (5) n—00

Since Y- (£)" diverges (ratio > 1), Y ¢, diverges.
poly(n)
poly(n)’
series). For exponential terms (like 3", 6"), compare with a geometric series.)

( For rational terms match the highest powers (compare with a p-

(e) Ratio Test

) Ap+1
L = lim

n—oo a?’l

o If L < 1: the series converges.
o If L > 1 or L = o0: the series diverges.

e If L = 1: the test is inconclusive.

Examples.
5n
(a) Convergent (L <1). a, = —.
n!
Gpy1 "/ (n+1) 5

= » 0 < 1.
an 5" /n! n—+1 n-oo

Hence > a,, converges.

(b) Convergent (L < 1). a, = 3%

any1  (n4+1)/3"  n4+1 1 \1<1
an n/3n  on 3 ne 30

Thus » a, converges.

2?1
(c) Divergent (L > 1). a, = —.
n

a1 2"/ (n+1) o M
an 2" /n ST n+1 nee

Hence > a,, diverges.
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(d) Divergent (L = ). a, = n!.

a 1)!
n+1:(n+>:n—|—1—>oo.
an n! n—00

Therefore > a,, diverges.

(e) Inconclusive case (L =1).

1 N py1 M

ap, = — —
n a, n—+1

1
— 1 but Z — diverges;
n

n? an (n+1)2
So when L = 1 the test gives no conclusion.

— 1 and Z — converges.

(f) Root Test

L = lim {/a,, same conclusions as the Ratio Test.
n—oo

Examples.

TL5

4_’[1.
b n5/ n 1
w"/4n 4 n%oo 4

(a) Convergent (L < 1). a, =

Hence > a,, converges.

(b) Convergent (L <1). a, = n)n = (%)nn

SO Y @y converges.
(c) Divergent (L > 1). a, = 3
a, = —F— — 2> 1,

hence ) a,, diverges.
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(d) Divergent (L = ). a, = nl!.

Van = Vn! — oo (> 1),

n—o0
therefore Y a,, diverges.

(e) Inconclusive case (L =1).
1 —1/n L.
a,=— = Va,=n — 1 and Z — diverges;
n n

1 _ 1
an = —3 =  Ya,=n"%"=1but Z = converges.

So when L = 1, the Root Test gives no conclusion.

6. Absolute and Conditional Convergence

e A series ) a, is said to be absolutely convergent if the series of
absolute values Y |a,| converges.

e A series ) a, is said to be conditionally convergent if >  a, con-
verges, but the series Y |a,| diverges.

Theorem (Absolute Convergence Implies Convergence): If the series
> |an| converges, then the original series ) a,, also converges.

The converse is not true. That is, a convergent series > a, does not
necessarily imply that > |a,| converges. A classical example is the alternating
harmonic series:

which converges conditionally, since
oo

(_1)n+1

diverges (harmonic series).
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(g) Alternating Series Test (Leibniz Test)

If a, > 0, decreasing, and lim a,, = 0, then:

o0
Z(—l)”Han converges
n=1
* > —(7112)”: absolutely convergent (use p-series test)

Y _(;17)7’”: conditionally convergent (use Leibniz test)

| .
e > % converges (use ratio or root test)

Exercises
Decide whether each series converges or diverges. If it converges, state

whether the convergence is absolute or conditional, and find the sum when
possible.

L. Zip (p>0)

23 nain)p (> 0)




10.

11.

12.

13.

14.

15.

16.

17.

> (5)
5
)

i‘;( 1)n_llr;n

i n—: (P €R)

i (_i)pn_l (p>0)

29
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Solutions

=1
1.;ﬁ

Integral test. For p > 0, set f(x) = x7P, positive and decreasing on

[1,00). Then
- | 1
/ rPder={|1-p], p-1 p==
! 00, p<1.

Hence Y n™" converges <= p > 1; diverges for p < 1.

=~ 1
2. ;:2 ) (use the integral test)
1
Let f(z) = for x > 2. Then f is positive and decreasing for x

~ 2(lnz)P
large. With u = Inz so du = dz/x,

ul=p (In2)1-r
/OO dx B Oodu_ 1—p :pT<OO, p > 1,
1 D - J - In2
2 #(Inz) 2 00, p<1l (forp=1itis
Therefore Z converges iff p > 1, and diverges for 0 < p < 1.
— n(lnn)?

“.Inn
3. ZF

n=2

1
Integral test with computation. Let f(x) = n_2::r; for > 2. Then
x

<1 w=lnz [ _ P o _ In2+1
/ D—Qxd:c = / ue "du = {—ue “} —/ (—e™")du = e < 0.
2 T In2 2 Jm2 2

(Equivalently, integration by parts: v = Inxz, dv = 2~ 2dx gives —(lnz +
1)/z.) Hence the series converges absolutely.
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4. Zn;jrl

n=1
Limit comparison with b, = —
n

n
_n_ Tl2

lim 2+ — lim
n—00 1/n n—>oon2—|—1

=1¢€ (0,00).

Since Z% diverges, the given series diverges.

Limit comparison with b, = —
n

n’+3 3 3
lim 2L = Jim 20
n—00 1/n n—oo N3 — 1

Hence it behaves like Z% and diverges.

> 1

oy
“~n(n+1)
Telescoping via partial fractions. Note
1 1 1
nn+1) n n+1
Thus Sy = 25:1(% — #1) =1~ ﬁ oo 1. So the series converges

- 1
a3y —— -1
o ;n(nJrl)

T3

Geometric with ratio 7 = 2, |r| < 1. Sum:

= . 1 1 5
0 - T 1—3
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8. i%

10.

11.

12.

Ratio test:

Gny1  (n+1)/3"0  n41 1
(7% - n/S” - 3n n—)oo/ 3

<1

)

hence absolutely convergent. Ezact sum: For |r| <1,

St = !

T 1 — )2
— (1—r)

1/3 3
With r = %, the sum equals ﬁ =7
o0 2n
>
n=0
Ratio test: 1
2n 1)! 2
a1 _ 27/ (¥ DU —0< 1.
an 27 /n! n+1

So the series converges absolutely. In fact >~ % = e,

Z —) (alternating harmonic)
n

Let a, = % Then a,.1 < a, and a, — 0. By Leibniz, the series

converges. Absolute series Z% diverges = convergence is conditional.

ap = \/Lﬁ is decreasing to 0. By Leibniz, the series converges. But > \/Lﬁ

diverges (p-series with p = %), so not absolute; conditional.

= /3n+1\"
2n — 1

n=1
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14.
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Root test:
S8+ 1\" 3n+1 3
= > — > 1.
2n —1 2n —1 n—oo 2
Hence the terms do not tend to 0 (indeed grow), so the series diverges.
i (1+3)"
2
n=1 n

We know (1 + %)n " e and is bounded by e. Thus

(1+1/n)" < £

2 — n2’

0<

n

and ) -5 =e) # < 00. By comparison, the series converges abso-
lutely.

00 . 1
S (L)

n=1 n

Why sin(1/n) > 0. For n > 1 we have 0 < 2 <1 < Z. Since sinz > 0
for all z € (0,7) (and in particular on (0, 7)), it follows that

sin(%) > (0 for every n > 1.

Convergence test (limit comparison with the harmonic series). Com-

pute
(1 :
lim sin(1/n) _ i 102

= 1.
n—oo  1/n 20 X

By the Limit Comparison Test with Y >, % (which diverges), the series
> > sin(1/n) also diverges.

Ezplicit lower bound (to see divergence to +0c). From the limit above,
there exists N such that for all n > N,

sin(1/n) < 1

1
S = sin(1/n) > —.
n =2 sin(l/n) 2 50

Hence
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15.

16.

17.

so the series diverges (to +00).

(0. ¢]

Inn
Sy
n=2
1
a, = n is decreasing to 0 for n > e since
n
d (Inzx 1—Inxz
— | — | = <0 > e).
dx( T ) x? (z>e)

By Leibniz, Z(—l)”*“%” converges. Absolute divergence:

1 1 > 1
/2 il {g(lnx)ﬂ =0 = Zﬁ diverges.

x 2 n
— R
> 5 (@ER)
n=1
Ratio test:
i 1)p /on+1 1% 1 1\?” 1
a+1:(n+)/ :(n+):_ 14+—-) — =< 1.
a np/2n Inp 9 n n—oo 2

Hence the series converges absolutely for every real p.

o0
(~1)!
> >0
n=1
1 . : :
an = — decreases to 0 for p > 0. By Leibniz, the alternating series
n

converges for all p > 0. Absolute convergence occurs iff p > 1 (since
> 1/nP converges exactly for p > 1); for 0 < p < 1 the convergence is
conditional.



Power Series

A real power series centered at xy € R is an infinite series of the form:

0.}
E an(x — x0)",

n=0

where a,, € R and x € R. If 2y = 0, the series is called a power series centered
at the origin.

Radius and Interval of Convergence

Consider the real power series centered at xy € R:
o0
g an(x — x9)"
n=0

There exists a non-negative number R € [0,¢], called the radius of
convergence, such that:

e The series converges absolutely for all x € R such that |x — zy| < R,

e The series diverges for all x € R such that |z — x¢| > R.

Region of (lov? k{7gion of doubt
Region of absol#to convergence

Divergence Divergence

70— R ﬁo 2o+ R

The radius of convergence R can be computed using either the Ratio
Test or the Root Test. Suppose one of the following limits exists (possibly

35
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infinite):
n+1
an

L = lim

n—oo

, or L= lim {/|a,l.

n—oo

Then the radius of convergence is given by:

(1
if L € (0, 00),

L
R={00 ifL=0,
\O if L = oo.

The corresponding interval of convergence is:

o If R = 00, the series converges absolutely for all x € R; thus, the
interval of convergence is R.

e If R > 0, the series converges absolutely on the open interval (zy —
R, xo%—fﬂ.
At the boundary points x = ¢ — R and © = x¢+ R, the behavior of the
series is generally uncertain. Each endpoint must be tested separately:

the series may converge conditionally , or it may diverge . There is no
general rule; it depends on the specific form of the series.

Example 1: Geometric Series

Consider the geometric series:
o0
Zx": ldo+a?+a’ -,
n=0

This is a power series centered at xy = 0, with a,, = 1 for all n.
We apply the ratio test to determine the values of x € R for which the
series converges:

an+1xn+1

lim

n—oo

= lim |z| = |z| (z #0).

apx" n—00

According to the Ratio Test:

e The series converges if |z| < 1,
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e The series diverges if |z| > 1,
e The test is inconclusive if |z| = 1.

Thus, the radius of convergence is:

R=1.

Behavior at the Boundary

We must check convergence manually at the endpoints:

o Atz =1:
Zl”:21:1+1+1+--- = diverges.
n=0 n=0

o At x =—1:
Z(—l)”:1—1+1—1+--- = diverges.
n=0

This is the Grandi series, which oscillates and does not converge.

Conclusion:

o0
Z x" converges if and only if |z| < 1.
n=0

Radius of convergence: R =1
Interval of convergence: (—1,1)

Example 2: Harmonic-Like Power Series

Consider the series:

A
n 1 2 3 '

This is a power series centered at xo = 0, with a,, = %
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Step 1: Apply the Ratio Test

We apply the ratio test to determine for which values of x € R the series
converges:

an+1xn+1

Apnx"

n

lim | =lz|. (z#0)

n—00 TL—I—].

Conclusion from Ratio Test:

e The series converges if |x| < 1,

e The series diverges if |z| > 1,

e The test is inconclusive at |z| = 1.
So, the radius of convergence is:

R=1.

Step 2: Analyze the Boundary |z| =1

We must test convergence at the endpoints.

e Atz =1:

= harmonic series = diverges.

S|

00
n=1

o At z = —1:

> —1)" > _1n—|—1
S _$ (D

This is the alternating harmonic series, which satisfies the condi-
tions of the Alternating Series Test:

1

— = is positive and decreasing,
n

. 1
— limy, 00 n o 0,

= Converges (conditionally).
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Conclusion:
X n
Z % converges for x € [—1,1),
n=1

with:

e Radius of convergence: R =1

¢ Interval of convergence: [—1,1)

Example 3: Exponential Series

Consider the series:

it :L‘”_ r 2 2
) TR I TR

n=1

This is a power series centered at xo = 0, with a, = %

Step 1: Apply the Ratio Test

We apply the ratio test to determine for which values of x € R the series
converges:

n+1

T n!

(n+1)! an

x
n+1

= lim

n—oo n—oo

|:O x # 0.

Conclusion from Ratio Test:

e Since the limit is 0 for all x € R, the series converges absolutely for
every real number x.

Conclusion:

e Radius of convergence: R = co
e Interval of convergence: (—oo, c0)

This series defines the exponential function:

o0
X xn
e = E —'
n:
n=0
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Example 4: Root Test with a Logarithmic Denominator

Consider the power series:

(0.]
>-
— nlogn
This is a power series centered at zy = 0, with coefficients a, = —— for

nlogn

n > 2.
We evaluate:

1 1/n
lim |a,|"" = lim sup ( ) :
n—00 N—>00 n 10g n

To simplify this, consider the logarithm:

1o\ 1
In < ) = ——In(nlogn).
nlogn n

We now compute the limit using L’Hopital’s Rule:

lim _In(nlogn) |
n—o0 n

Let f(n) =1In(nlogn) and g(n) = n. Since both tend to infinity, we apply
L’Hopital’s Rule:

In(nl
lim _In(nlogn) = — lim i[ln(n log n)]/i[n](n is real number)

n—00 n n—00 dn dn

Differentiate numerator and denominator:

d 1 logn 4+ 1
| 1 — (1 1) = .
dn[n(n og )] nlogn (logn +1) nlogn
So the limit becomes:

. logn—+1
— lim ——— =
n—oo nlogn

1 1/n
lim ( ) = =1.
n—oo \ nlogn

0.

Therefore,
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Conclusion from the Root Test:

i o7 = (Jim o) <Jo] = J2]
So:
e The series converges if |z| < 1,

e The series diverges if |z| > 1,

e The test is inconclusive at |z| = 1.

At x = 1:

We consider the series:
=1
nz:; nlogn

To determine convergence, we apply the integral test.

Let ]
flz) = , defined for = > 2.
xlogx

The function f(x) is:
e positive on [2, 00),
e continuous on [2,00),
e decreasing for z > 3 (since log z grows slowly).

We evaluate the improper integral:

<1
/ dx.
5 Tlogx

Make the substitution v = log x, so du = %dx. Then:

* 1 1

/ dr = lim — du = lim [log u]j,,, = oc.
s zlogx =00 Jlog9 U t—00

Since the integral diverges, the integral test implies that the series also

diverges:
o0

1
Z diverges.

nlogn

n=2
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At = —1:

This is an alternating series. It converges conditionally by the Alternating
Series Test since:

1

is positive and decreasing for n > 3,

nlogn
li —L_ =0
¢ HMp—eo nlogn ~— 7'
Conclusion:
0
xTL

E converges for z € [—1,1).
“~ nlogn

Radius of convergence: R =1
Interval of convergence: [—1,1)

Properties of Power Series

Let

o
(@)=Y an(z — )"
n=0
be a real power series with radius of convergence R > 0. Then the function f
has the following important properties on the open interval (xg — R, xo + R):

e Smoothness: The function f is infinitely differentiable on (x( —
R,zo + R), i.e., all derivatives of f exist and are continuous on this
interval. This follows from term-by-term differentiation being valid
within the radius of convergence.

e Term-by-term differentiation: The derivative of f is obtained by
differentiating term-by-term:

fl(@) = nay(z —x)"",
n=1

and this series has the same radius of convergence R. The term n =0
vanishes in the derivative.
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e Term-by-term integration: The indefinite integral of f is given by
integrating term-by-term:

where C' is the constant of integration. This series also has radius of
convergence R.

e Preservation of convergence: Both differentiation and integration
preserve the radius of convergence R. That is, the derived and
integrated series converge on the same interval (zg — R, xo + R) as the
original series.

e Analyticity: Within the interval of convergence, the function f is
analytic. That is, not only is f smooth, but it equals its Taylor series
expansion centered at x:

% (n) (4
f) =3 T 0 g
n=0 )

Analytic Functions

A real function f is called analytic at x( if there exists a power series
> an(xr — )" that converges to f(x) for all  in some neighborhood of z.
In that case, f has a Taylor expansion:

X, fn)
fw) =3 T e
n=0 )
Important Notes

e A function can be infinitely differentiable but not analytic (e.g., f(x) =
e~ V" with f (0) = 0, has all derivatives zero at 0, but is not identically
7€10).

e Power series converge uniformly on compact subintervals of the open
interval of convergence.

e Within the interval of convergence, power series can be manipulated
like polynomials (term-by-term addition, multiplication, etc.).
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Representation of Functions by Power Series

Many functions can be expressed as power series within a suitable interval. A
function f is said to be represented by a power series centered at xy € R
if there exists a sequence (a,) such that:

flx) = Z an(x —x9)" for all x in some interval (xg — R, xo + R),

n=0

where R > 0 is the radius of convergence.
Maclaurin formula (Taylor at 0).

. £
f(z) = Z f '(O) " for |z| < R,

n!
n=0

Let f(z) = = = (1 — 2)~!. Compute the first few derivatives explicitly:

1—2x

This suggests

fP(z)=nl (1 —2)"™Y  foralln>0.

Evaluating at x = 0 gives
F0) =n! (1 —0)"0+) = p.
Therefore, the Maclaurin series of f is

L /M0,
1—x:nz:% n! :C:ZSU.

n=0

The radius of convergence is

=y
I
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so the series converges for |z| < 1. (Endpoint behavior: at x = 1, terms are
all 1 and the series diverges; at x = —1, terms alternate +1 and also diverge.)

One often rewrites a function as 1—() and substitutes

— Y (@) (el <),

1—g(x)
1 1 1 1 1
2+ 3z Write 2+ 3r §1+%x T 21— (—%x)’ i
o) =—2x, gl <1 e la <2
Then .
1 1)n3"
2+ 3z :;( 2n)+1 v
o ! . View as hence
1+ 22 — (—2?)’
glz) =—2*,  Jgla)| <1 & |z[ <1,
and

Differentiation rule for power series. If a power series

f(x) = Z "
n=0

has radius of convergence R > 0, then for every |x| < R it is differentiable
term-by-term and

(0.9]
f(z) = Z na,r"
n=1

with the same radius R.
Apply to the geometric series.
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For |z| < 1,

00
1 E:n
= T .
— X
n=0

Differentiate both sides term-by-term on |z| < 1:

d = d
%(1—x> god_ — 1—x an

d 1 1
(We also know directly that e L by calculus.)
Reindex to standard powers of x. The series an”_l is correct,
n=1

but it is often nicer to write powers as 2”. Let m =n —1 (son =m+ 1 and
m > 0):

an :im+1)mm:i(n+l)x”
m=0 n=0

Therefore, for \x\ <1,

ﬁ:Z(n—Fl)x

n=

Differentiate the previous identity once more (still valid for |z| < 1):

d 1 d (< 2 - o
I(ﬁ)d‘(z ) = T oDt

Divide by 2:
1 Z n(n—1)z
—x)3
Reindex to express in powers " let m=n—2(son=m+2, m>0):

ﬁzéz (m+2)(m+1)z™

Integration rule for power series .
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If a power series

oo

f(x) = Z apx"

n=0

has radius of convergence R > 0, then for every |z| < R it is integrable
term-by-term

x e x o0 +1
/ f(t)dt:Z/ ant"dt =3 a,—
0 n=0 0 n=0 n

The resulting power series has the same radius R.
In(1 + z) via integration.

Start from the geometric series with g(z) = —a:

1 S n - n, n
T =2 (o)t =) -yt <L
1= (=)

n=0 n=0
Integrate term-by-term from 0 to x (valid for |z| < 1):
0 an

——dt = D't dt = —-1)" .

= [ >V

The left-hand side:
S|

Reindex (m = n + 1) to the standard form:

oo

In(1 = —1”*195—” 1.
n(1l+ ) Z( ) b 7| <

n=1

Endpoints: At x = 1 the series becomes the harmonic series (diverges). At

xr = —1 it is the alternating harmonic series (converges conditionally to
- 1
n2=> (-1)""'=

n
n=1
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Now start from the geometric series with g(t) = —*:
1 o0 (@)
R —2\n = — 1) t| < 1.
T L = e

Integrate term-by-term from 0 to x (valid for |z| < 1):

) o0 x2n+1
dt = ”t”dt —1)" .
| s / S

n=0

Recognize the left-hand side:

€T
1
/ dt = arctan x — arctan 0 = arctan z.
0

1+ ¢?
Therefore
o x?n—l—l
t = —-1)" : < 1.
arctan x nz_%( ) o1 ||

Endpoints: At x = +1 the series becomes the Leibniz series; it converges
conditionally to £+ /4

Exponential function ¢e*

Recall Maclaurin (Taylor at 0):

> £
— Z ! '( ) " (for |z| within the radius).
n!

For f(x) = e”, we have f("(z) = e for all n, hence f™(0) = 1. Therefore

00
SO
ol
n=0

Similarly,
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Functions sinhz and cosh x.
Recall that, if f(z) =>_ ayz™, g(z) =>_ b,a", then

(f(x) +g(z) =D _(an+by)z"
We know that

, —e* et +e”
sinhz .= ——, coshx := —

Substitute the poewer series of e*® and combine term-by-term termwise ad-
dition/subtraction is justified and preserves R = oo:

_ 1/ (=D)L (=1)" "
he==(S" L S 20 )y 2

Note that 1 — (—1)" is 0 for even n and 2 for odd n, so only odd powers
remain:

o .T2k+1
Slnh.fC:kZm (R:OO)
=0

Similarly,

1=z = ool—i— o
COSh$:§<;H+Z i ) Z g

n=0 n=

where 1+ (—1)" is 2 for even n and 0 for odd n, so only even powers remain:

20 2k
coshx:Z(Qk)! (R = 00).
k=0
Examples
e Exponential function:
T allreR
e _ZH’ or all r € Ix.
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Geometric series:

1 0
= g ", for |z| < 1.
l—x —

Sine and cosine:

0 —1)" 2n+1 0 —1)» 2n
fsi]flaczg:L COS@‘:Z&, for all x € R.

|’ |
~ (2n+1) ~ (2n)!
e Natural logarithm:
> (_1)n—|—lxn
In(1 N " < 1.
n(1+ z) Zl - or |z]
e Arctan:
0 (_1)nx2n+1
t = — . f <1
arctan x nz:; o1 o lz| <
Exercises
1. Show that ,
. In(l+z)—z+% 1
lim = —.
x—0 ;C3 3

Solution. Use the power series representation

o (_1)n+1 332 $3 334
1 1 = S 7 "= —_ - ..
n(l+ z) nz::l o x T -3 -+ 3 1 +
Then
22 g3 2 43 A
In(1 —r+L = - — - — —rt—=———
n(l+z)—z+% (:E 2+3 4+ ) T+ 5 4—|-
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2. Show that ,
¥ l—cosx—%5 1
xlir(l) $4 _ﬂ
Solution. Use
o0 20 22 A g6
_ —1)" -1y .
cosw g%( o] > Toa T "
Then
2 2?2 2t 22 ot b
1— S T T AR (PR e S B
R < > T2 ) > 4 0

Divide by z* and let z — 0: — | &

. Evaluate

Solution. Recall

= Z(n + 1)z" for |z] < 1. Set z = L
n=0

1
(1 —x)?

. Show that

and then compute

Solution. Start from S(z) =Y~ 2" = = (|:z:| < 1). Differentiate:

S/(ZU) = Zrozolnxn 1 = (1_11_)2. Multiply b anl nx" = (1_563;)2-
Differentiate this identity:

Zn“l —( ’ ):(1_$)2—x'2(1—x)(—1)_ 142

(1 =) (1 —a)! S (I—a2)F




- 1
Multiply by x: z:: n?x" = H, as claimed. Now plug = = %

n=1




Fourier Series

Fourier series allow us to represent periodic functions as infinite sums of sines
and cosines.

1. Periodic Functions

A function f(t) is said to be periodic with period L > 0 if

Fit+L)=f(t) forallteR.

Example. Let f(t) = sin(¢). Then f is periodic with period L = 2,
because:

f(t+2m) = sin(t + 27) = sin(t) = f(¢).
Note that f(t) = sin(t) also satisfies
f(t+4m) =sin(t + 4m) = sin(t), f(t+ 6m) =sin(t + 67) = sin(t), etc.

In fact, sin(¢) has period 2n7m for any positive integer n = 1,2,3,....
However, the smallest positive period is 27, which is called the period.

Graphical Interpretation. A function with period L has a graph that
repeats itself every L units. That is, the graph remains unchanged when
shifted left or right by L.

53
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1. Sine Function sinz

@)

Cosine Function: cosx

/()
| \ /
™ | o

Example: Periodic Extension of x?

We define the function:
flz) =22 x€(-1,1),
and extend it to all real numbers by periodicity with period 2:
flz+2) = f(x), forallzeR.
To repeat the shape of 22 from (—1,1) across the real line, we shift the

basic graph by multiples of 2. This means we “copy and paste” the curve z?
into every interval of length 2.
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Example: Periodic Extension of x
We define the function:
f@) == xe(-1,1)
and extend it to all real numbers by periodicity with period 2:

flx+2) = f(x), forallzeR.

L f(r)

_10 | /8 6 4 9 H A 6 8 0

2. Piecewise Continuous Functions and Jump
Discontinuities

A function f is called piecewise continuous on an interval [a, b] if:
e It is continuous on parts of the interval, except at a finite number of
points of discontinuity,
e At each point of discontinuity, the left-hand and right-hand limits exist

and are finite.

When the two one-sided limits exist but are not equal, the function has
a jump discontinuity.
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Example: Jump Discontinuity

/()

left limit !

fmp

right limit

C

The function has a jump at x = c. Both one-sided limits exist but are not equal.

Orthogonality of Trigonometric Functions

The sine and cosine functions are orthogonal on [—7, 7]:

m if m, =
/ cos(mx) cos(nx) dx = " 1 m=n 70,
0 ifm#n,

—T

s if 1 —
/ sin(max) sin(nx) de = " 1 =
- 0 if m#n,

/ cos(mz)sin(nx)dx =0 for all m,n.

—T

These orthogonality relations are the foundation of Fourier coefficients.

3. Fourier Series of a Function

The Fourier series of a function f(z) with period 2L is given by:

flz) ~ % + ni"; {an oS (%) + by, sin (?)]

where the Fourier coefficients are:

L
ay = %/_ f(x)dx

L
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= %/_LLf(a:)cos (?) dz, b, = %/_if(x)sin (?) dx

provided that these integrals exist.
The symbol ~ means that the Fourier series represents an approximation of
the function f(z).

In general, the Fourier series of a function f is not exactly equal to f.
However, under suitable conditions on f, the series converges to f(x) in
various senses — such as:

¢ Pointwise convergence at each point (if f is piecewise smooth),
e Uniform convergence on an interval (if f is continuous and periodic),

e Convergence in norm, such as in the L?sense (i.e., mean-square
convergence).

4. Dirichlet’s Theorem (Pointwise Convergence)
Let f(z) be a function of period 2L. Suppose that:

e f is piecewise continuous on [—L, L],

e f’is piecewise continuous on [—L, L].

Then the Fourier series of f converges at every point x € R to the average
of the left- and right-hand limits:

fla)+ fl@) % 4 nzoo; {an Cos <?) + by sin (?)}

2

where the right-hand and left-hand limits as:
f@™) = lim f(§), f(z7)= lim f(§)
E—at E—a

Furthermore, if f is continuous at x, then the Fourier series converges to

(o) }
= 50 + Z [an cos (mrx) + b, sin <nzx>}

n=1
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Summary

Let Sy(z) denote the N-th partial sum of the Fourier series of a function f
with period 2L:

s (72 e (52
a,, COS 7 5, SIN 7

E

SN(x) == % +
1

n

This expression is known as a trigonometric polynomial of degree V.

e If f is continuous at a point z, then:

lim Sy(z) = f(z)

N—o0

e If f has a jump discontinuity at x, then:

lim SN(LE) =

N—oo

(f@7) + f(="))

DO |

That is, the Fourier series converges to the midpoint of the jump.

Example: Fourier Series of a Square Wave

Let f(t) be the square wave of period 27, defined over one period by:

-1, —7<t<0
1, O<t<m

f(t) = sign(t) = {

We now compute the Fourier series of f(t). Since f is piecewise smooth
on [—m, 7|, the Fourier series converges (by Dirichlet’s Theorem) to:
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?0 + Z an cos(nt) + by, sin(nt))

n=1

The Fourier coefficients are given by:

_ % /_ T FE) e, ay — % /_ F(#) cos(nt) dt, b, — % /_ F(t) sin(nt) dt

Step 1: Compute qg

aO:%</_i(—1)dt+/0ﬂldt> :%(—wﬂ):o

Step 2: Compute a,

0 = % ( / i(—l)cos(nt) dt + /O " cos(nt) dt)

Since cosine is even:

a, = 1 (—/ cos(nt) dt +/ cos(nt) dt) =0
T 0 0

Step 3: Compute b,

by = % ( /_ i(—l)sin(mﬁ) dt + /O " sin(nt) dt)

Since sine is odd:

1 ™ ™ 2 ™
by, = — (—/ sin(nt) dt +/ sin(nt) dt) = —/ sin(nt) dt
T 0 0 T Jo

Now compute:

. 0, if nis even
sin(nt)dt = ¢, .. .
0 =, ifnis odd

Thus:
b 0, ifniseven
" 1L ifnisodd

nm’
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The Fourier series of f(t) is:

oo

4
fy~ > — sin(nt)
n=1n odd

~ Z RS jt_ o sin((2n + 1)t)

Only the sine terms with odd indices appear in the expansion.

5. Symmetry : Even and Odd Functions
A function f is called odd if:
f(=x)=—f(x) forall z €R.

Examples: sgn(z), =z, z° sin(x).

Odd Function: f(z) = 2*
f@

The graph is symmetric with respect to the origin.
A function f is called even if:

f(=x) = f(x) forall z €R.

Examples: |z|, 22, cos(z).
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Even Function: f(z) = x?

1)

_9 2

The graph is symmetric with respect to the y-axis.

Even—Odd Decomposition of a Function

Every function f(z) defined on a symmetric interval [—L, L] can be uniquely
written as:

f(‘x) = feven(x) + fodd(x)

With:
r)+ f(—2 r)— J(—x

o) = LEHICD) ) f0) =S
These satisfy:
® foven IS even,
® fodd is odd,
e Their sum gives f(z) exactly.

T

Example: Decompose f(z)=¢
Let f(x) = e®. Then:

feven(T) = % = cosh(x) (even part)
el — e~ .
foaa(z) = — = sinh(z) (odd part)

So:
e’ = cosh(x) + sinh(zx)
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Even and Odd Decomposition in Fourier Series

According to Dirichlet’s Theorem, any function f(x) (under suitable condi-
tions) can be written as the sum of an even and an odd function. This is
reflected in the structure of the Fourier series:

f(z) ~ % +;ancos (n_;r)x) +;bnsin (ﬂ[jx)

7 N 7

VvV Vv
even part odd part

e The even part consists of cosine terms and the constant term. Since
cosine is even, this part is symmetric about the y-axis.

e The odd part consists of sine terms. Since sine is odd, this part is

symmetric about the origin.

Consequence: Uniqueness of Even—Odd Decomposition

Since the Fourier series naturally separates into an even part (cosine terms)
and an odd part (sine terms), we can make the following conclusions:

o If f is even, then its odd part must be identically zero. This happens
if and only if all sine coefficients vanish:

b,=0 foralln>1.

Thus, the Fourier series contains only cosine terms (and possibly ag).

e If f is odd, then its even part must be zero. This occurs only when all
cosine coefficients vanish, including the constant term:

ay=20, a,=0 foralln>1.
Therefore, the Fourier series contains only sine terms.
Summary:
o If f is even, then all sine coefficients vanish: b, = 0 for all n > 1.

e If f is odd, then all cosine coefficients vanish (including the constant
term): ag =0, a, =0 for all n > 1.
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Fourier series on [—L, L] with period 2L
General form

~ — —|— nz:; {an cos(mm> + b, sm(m[ix)] :
1 [ 1 [ nmwx 1 [t
—1 [ f@de = [ f@eos(FE) dr b= [ staysin

Even functions: f(—x) = f(z) (cosine series)

Q@ — nmx
f(::f;)NE—F;ancos(T),
2 [F 9 L
-2 [Ciwan =2 [ i@es(BE) dn nzt,

b, =0 foralln > 1.
Odd functions: f(—z)= —f(x) (sine series)

- nmwr
x) ~ an sin{ — ),
> busin(77)
2 [T . /NTX
ag = 0, a, =0 foralln>1, b, = — f(m)sm(—) dr, n>1.
L/, L
Examples
1 (odd)

(f odd).
Hence ag = a,, = 0 and

2 (7 2 ™ 21— 2 1—(=1)"
b, = —/ 1-sin(nz)dr = — {— Cos(nx)} = cos(n) —~—< ) :
0 s

™ 0 ™ n n
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4
Thus b, = 0 for n even, and b, = — for n odd. Therefore
™

>1|»J>

L

n odd

(Gibbs phenomenon appears at the jump points x = 0, £7; convergence is to
the midpoint value there).

2) (odd)
f(x)=2 on[—m 7| (fodd).

Again ay = a,, = 0 and

2 ™
b, = —/ xsin(nz) dx.
T Jo
: : cos(nx)
Integrate by parts with u = x, dv = sin(nz) dx so du = dx, v = — :
n

/wasin(na:) dr = {_M}Z+l /0“ cos(nz) dr — _MJFE [sin(nx)r _

n n n n

Hence

and the Fourier series is

_QZ

SlIl HI

3) Absolute Value (even)

f(x) =|z| on[—m,7] (f even).
Thus b, = 0. Compute

2/” 2 72 ay T
ag = — rdr=—-—=1m1 = —=
T Jo T2 2

DD |
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For n > 1,
2 ™
ap = —/ x cos(nx) dz.
T™Jo
, sin(nz)
Integrate by parts with u = x, dv = cos(nzx) dx so du = dzx, v = ;
n

n 0 n n n n 0

/Ow x cos(nx) dr = [M}W_l /07T sin(nzx) dr = M_l [_Cos(nx)}w'

Since sin(nm) = 0,

m 1 - 0 1
/ x cos(nx)dr = —— - cos(n) + cos(0) = ——2<1 — (—1)”).
0 n n n
Therefore
2 1
=2 La )
“ 70 ( n2( (=1) )
Hence a,, = 0 for n even, and for n odd a,, = ——. The series is
™
T 4 <= cos(nx)
|~ 5 = = Z ol
n odd

At x = 0, we have cos(0) = 1, so

T 4 <= cos(nx) T 4 ZOO 1
2] 2 7 n? 2 7 n?
n=1 n
n odd n odd

Hence
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4. (even)

For n > 1,

2 ™
ay, = —/ 2% cos(nx) de.
T Jo

Let I = [, 2% cos(nx) dz. Integrate by parts twice.
sin(nx)

(1) First parts: u = 22, dv = cos(nz) dx so du = 2z dx, v =
n

2

' ™ 2 (7 2
I = [M} ——/ zsin(nz)dr = 0— —J,
n o nJ n

since sin(nm) = 0, where J = [ xsin(nz) dz.

(2) Second parts for J: u = x, dv = sin(nx) dx so du = dx, v = _cos(n:z:):
n
7 {_:ccos(nx)erl /7T cos(nz) di = _7rcos(n7r)+l [sin(nx)}7T _ _7'('(—1)”.
n 0 nJy n nl n lo n
Thus
I: _g(_ m(—1) ) 0 VR PO (o L ()
n n n? T m n? n?
Therefore
%~ — + Z cos(nx) |

At z =0, we have cos(0) = 1, so the series becomes

% i:: cos(nx) :% i:o:

Dividing both sides by 4, we obtain
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n2 12

n=1

Exercise Find the Fourier series on [—m, 7] (with 27-periodic extension) of
s

f(z) =35~ |z].

o

1
Then evaluate your series at © = 0 to deduce the value of Z

(2n — 1)
: : : : S . on=l
Solution Since f is even, its Fourier series is a cosine series

oo 1 T 1 T
flx) ~ %+; ancos(nz),  ag=— /_ f@)da, an = /_ J(@) cos(na) dz.
Compute ay. Using evenness,

2 [T 2 ™
aoz—/ (Z—x)dx:—{ﬂ—x—] = 0.
T Jo \2 ml2 2 1o

Compute a,. Again by evenness,

2 ™ 2 ™ ™
a, = —/ (z — x) cos(nx) dr = — [z/ cos(nx) dxr — / x cos(nz) d:z:]
™ Jo 2 L2 0 0

The first integral is 0 since [ cos(nz)dz = Singlm) = 0. For the second,
integration by parts gives

/ x cos(nz) dr =
0

7 sin(nm) N cos(nm) —1 _ (—1)7; -1

n n n
Hence
4
2 (-)"—=1 2 1—(=1)" —, N odd,
p=—— ——5 —=———>F5— =T
T n T n 0, n even.
Therefore
T iz 4icos(nx) (—n <z <)
— — |zl ~ — —T < x <.
2 T n?
n odd




At z = 0. Since f(0) = § and cos(0) = 1,

T4 = 1 - 1
ST m = | @i

e
I
—_

n=1
n odd



Fourier Integrals

Motivation

While Fourier series represent periodic functions as sums of sines and cosines,
many functions in practice are defined on the entire real line and are not pe-
riodic. In such cases, we use the Fourier integral to represent non-periodic
functions using integrals rather than infinite sums.

Fourier Integral Representation

Let f(z) be a real-valued function defined on (—o00,00). Suppose that f
satisfies the following conditions:

(i) f and f’ are piecewise continuous on every bounded interval of R,

(ii) f is absolutely integrable on R, i.e.,

o0
/ |f(x)|dx converges (as an improper integral).

o

Then the Fourier integral representation of f is given by:

f(x) = = /000 [A(X) cos(Ax) + B(A) sin(Az)] dA, (1)

v

where the Fourier cosine and sine transforms are defined as:

A(N) = /_ T cosO)dt. BN = /_ () sin(At) dt.

The identity (1) holds at every point z € R where f is continuous. If x is
a point of discontinuity, the Fourier integral converges to the average of the

69
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left- and right-hand limits:

(fa™) + f(z™)) = %/OOO [A(X) cos(Az) + B(A) sin(Ax)] dA.

DO | —

Symmetry

o If fis even,ie. f(—x)= f(x), then the sine terms vanish (B(\) = 0)
and we obtain the Fourier cosine integral:

1 o0
f(x) = —/ A(X) cos(Ax) dA,
T Jo
where -
A(N) = 2/ f(t) cos(At).
0
o If fisodd,ie. f(—z)= —f(z), then the cosine terms vanish (A(\) =
0) and we obtain the Fourier sine integral:
1 oo
fla) = 2 / B(A)sin(Az) dA,
T Jo
where -
B(\) = 2/ f(t) sin(At).
0
Example 1.
Define:
)L |2l <
flo) = {o, 2| > 1.
/()
_]__—
- - - - €T
-2 -1 1 2

Plot of f(z) =1 for |z| <1 and f(z) = 0 otherwise.
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Since f is even, we have B(\) = 0, and the Fourier cosine transform is:

2 sin(A
AN) =2 f(x)cos(Ax)dx = 2/ cos(Ax) dr = SH;\( )
0 0
Hence, the Fourier integral representation of f(z) is
1 [ 2 [ sin(\
f(x) = —/ A(N) cos(Ax) d\ = —/ sin( )cos()\x) d\.
™ Jo ™ Jo )\
At x =0 5 % gin )
f(()):1——/ Al )Y
™ Jo )\
Then -
sin T
d\ = —
| e
Example 2
Define:
-1, —-1<z2<0
flz)=<1, 0<z<1
0, |z|>1
f(@)
1 |
- - - - T
-2 —1 1 2
_]__,
Since f is odd, we have A(A) = 0, and the Fourier sine transform is:
= 2/ f(x)sin(Ax)d
Substituting f(x) gives:
1
2(1 —
B(\) = 2/ sin(Az) do = ( COS(A)).
0 A
Hence, the Fourier integral representation of f(x) reduces to:

fla) = /O " B sin(r) d) = 2 /O T L= oSN G () dn

T T A
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Example 3.
Let
1=z, |zl <1,
flx) =
0, |z| > 1.
f(x)
1
0
- / ‘ . - €T
-2 -1 1 2

Since f is even, in the Fourier—integral representation

f(z) = ! /000 [A(X) cos(Az) + B(A) sin(Az)] dA,

™

we have B(\) = 0 and only A(\) is needed:

A(N) = /_ 7 H(0) cos(M) di = 2 /0 (1= f) cos(M) d.

Compute:
1 1
AN) =2 [/ cos(At) dt —/ t cos(At) dt] :
0 0
Now,
! sin A /1 sin A cosA—1
cos(At) dt = , tcos(At) dt = + :
[ eostnyar =520 [ reostde = 2+
Hence,
sin A\ sinA  cosA—1 2[1 — cos A\
() { A A A2 } A2

Since B(\) = 0,

flz) = = /OOO w cos(Ax) dA.
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At z =0, we have f(0) =1, so

2 [1—-cosA
1= f(0)=-— —d.
== =
Thus,
1 —cos\ T
———d\ = —.
[ re=g
Example 4.

1, -1<z<0,
flz) =<0, 0<x<1,

0, |z|>1.

-1 1
Recall that, if f(x) and f'(x) are piecewise continuous on every finite interval

and f(z) is absolutely integrable on (—o00, 00), then

fla) = & /O " TA() cos(\) + BOY sin(Aa)] dA,

™

where
AN) = /_Oof(t) cos(At) dt, B(\) = /_oof(t) sin(At) dt.

At a point of discontinuity z,

%[f(g;a) + f(zg)] = %/Ooo [A(X) cos(Azg) + B(X) sin(Azg)] dA.

Here f(x) is supported on [—1, 1], so

A(N) = /_ icos(kt) dt — Si“;”, B(A) = /_ i sin(\) dt:1_+os()\).
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Hence

f(z) = %/000 [sin}f)\) cos(Ax) + l—cfos()\) sin(A\x) | d\.

At x =0, sin(Az) = 0 and cos(Ax) = 1, giving

*sin(\
f(o)zi/0 - A( )d)\:%-gzl.

By the Fourier Integral Theorem,

SLFO0) + £(07)) = 5(1+0) = 5,

which agrees with the computed value.

Exercise. Show that

s
> sin(w\ —sinz, 0<z <,
/ wsin(kx)d)\: 2
0 , Tr >,

e

(and the value is 0 also for x < 0). Hint: Use the Fourier sine transform.

Solution. Consider the function

1 <zx<
f(z) = {smx, 0=e=m, (and f(z) =0 for z < 0).
0, T >,

Its (one-sided) Fourier sine transform is

B(\) :/ f(t)sin(At) dt :/ sint sin(At) dt.
0 0
Using the product-to-sum identity

sint sin(\t) = %(cos(()\ — 1)t) — cos((A + l)t)),
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we get

_/Oﬂ cos((A—1)t) dt — /O” cos((A+1)t) dt]

1

E —

1 sin((A — 1)m) B sin((X + 1)m)
2 A—1 A+1

Since sin((Ax1)7) = sin(7\) cos m£cos(mA) sin T = — sin(7wA), this simplifies
to
L[ sin(mA) | sin(rA) -1 sin(7A)

lﬂwzﬁ{ A—1*_A+1]:$MmMZV—1_1—AT

For suitable piecewise smooth, absolutely integrable f, the sine-transform
inversion reads

f(x) = z /OO B(A) sin(Ax)d\ for z > 0,
0

v

with the usual midpoint value at discontinuities. Since f is continuous on
[0, 7] and vanishes for z > 7, we obtain

sinz, 0<ax<m,

T
*sin(wA) | 7'(' 5
—_— = -_— pu— 2
!A Ty sin(Az) dA = 7 f(x) 2

T > T,

and the integral is 0 also for # < 0 (since f(z) = 0 there).
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First Order Differential
Equations

Introduction

In this chapter, we study methods for solving first-order differential equa-
tions. The most general form is:

dy
Y — t
There is no general formula for solving this equation. Instead, we explore
several special cases.

Topics Covered

e Linear equations

Bernoulli equations

Separable equations

e Homogenizes equations

Exact equations

Non-exact and integrating factors.

Linear First-Order Differential Equations

A linear first-order differential equation has the form:

dy

-+ p(t)y = g(t)

7
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where p(t) and ¢(t) are continuous.

Solution Method

1. Compute the integrating factor:
u(t) = el PO

2. Multiply the entire equation by pu(t):

dy

u(t)g + pu(t)p(t)y = pu(t)g(t)

3. Recognize the left side as the derivative of a product:

L)) = nHa(r

4. Integrate both sides:

5. Solve for y(t):

Summary

The general solution is:

1
_ [ p(t)dt
y(t) = T (/e P %g(t) dt+C>

However, it’s often easier to use the process above rather than memorizing
the formula.
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Example 1.

Solve the IVP:
1
ty +2y=t"—t+1, y(1) =3

Step 1: Standard form.
Divide by ¢ (assume ¢t > 0):

’+2 =t 1+1
vty = .

Step 2: Integrating factor.

Step 3: Multiply through by u(t) = t*

d
42y =t -2+t = E(t2y):t3—t2+t

Step 4: Integrate both sides.

1 1 1
Py= B -P+)dt=-t"—2+>+C
Y /( + 1) 1 3 +2 +

Step 5: Solve for y(t).

(t)—1t2 Lyl o
P =3 T3 T TR

Step 6: Apply initial condition.

Final Solution:

(t)—1t2 SRS
SO =34" T3 Ty T o
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Example 2
Solve the initial value problem:
cos(z)y’ +sin(x)y = 2cos®(x)sin(z) — 1, y (%) =3v2, 0<z< z

Dividing both sides by cos(x), we obtain:

o + tan(x)y = 2 cos®(x)sin(z) — sec(x)
The integrating factor is:
[ tan(z) dx

p(x) =e = sec(x)

Multiplying the equation by the integrating factor:
sec(x)y’ + sec(z) tan(x)y = 2sec(x) cos®(x) sin(z) — sec?(z)
d
dx
Integrating both sides:

sec(x)y = /(2 cos(z) sin(x) — sec?(z)) dx = /Sin(2x) dx — /sec2(x) dx

[sec(x)y] = 2 cos(z) sin(z) — sec?(x)

1
sec(x)y = —3 cos(2z) — tan(z) + C

Solving for y(x):

y(z) = cos(x) (-% cos(2z) — tan(z) + 0)

y(x) = —% cos(z) cos(2x) — cos(x) tan(z) + C cos(x)

1
y(xr) = ~3 cos(z) cos(2x) — sin(z) + C cos(x)
Using the initial condition y (%) = 3v/2, we have:

3f——1§0—‘2f f = 3V2 = —£+O§ C=7

Thus, the solution is:

y(xr) = —% cos(z) cos(2x) — sin(x) + 7 cos(x)
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Bernoulli Differential Equations

A Bernoulli equation is a first-order nonlinear differential equation of the

form: y
é + P(r)y =Q(z)y", n#0,1

Method of Solution
1. Divide both sides by y" (assuming y # 0):

d
y 4 Py = Qla),

2. Make the substitution:

d d
v=y"" = d_v =(1-— n)y*”—y.
T

3. Replace y‘”g—i in the equation to get a linear equation in v:

Z_Z + (1 =n)Pz)v=(1-n)Q(x).

4. Solve this linear first-order ODE using the integrating factor method:

,U(ZL") _ ef(l—n)P(Jc) da:.
5. After finding v(z), use the back-substitution y = v

Example.

Solve J
dy
I +y=uxy".
This is a Bernoulli equation with P(z) = 1, Q(z) = z, and n = 2.

Dividing both sides by 32 gives
_ody ~1

— = .
Yy dx+y
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Let v =y, so that & = —y 2% Substituting into the equation yields
dv . v
—— +v=ux, orequivalently — —ov=—ux.
dx dx

This is a linear first-order equation in v. The integrating factor is

plx) =e 11 =
Multiplying through by e™*,
d
e_xd—v —e v =—xe .
T

The left-hand side is the derivative of ve™, so

a
dx

(ve ™) = —ze ",

Integrating both sides gives
ve " = /—xe_xdx =(z+1e *+C.

Hence,
v=x+1+Ce".

Substituting back v = y~!, we obtain the general solution

1
Y eyt Cer
At 2 = 0, if C = 0, then y(0) = 15 = 1. This can serve as an initial

condition if specified.
Example.
Solve the initial value problem

d 2

_y — _y = x2y37 y(l) =1, x>0.

dx T
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2
This is a Bernoulli equation with P(z) = —=, Q(z) = 2%, n = 3. Dividing
T

both sides by 3? (assuming y # 0) gives

dy 2y?
34y 4y _ 2

dx x
d d
Let v = y~2, so that & —2y‘3—y, or equivalently
dx dx
sy _ _1dv
dx 2dx
Substituting in the equation yields
ldv 20 9
—_—— — =27
2dr ’
which simplifies to
dv 4v 02
— 4+ —=-2z
de =z

This is a first-order linear differential equation in v. The integrating factor

s
,LL(.T) — ef%dx — e4lnx _ .CC4.

Multiplying through by x*,

d
x4—v + 4z = —225,
dx
which gives
d ., 4 6
- - _9
o (x™v) x
Integrating both sides:
4 227 C
U= ——
7
Hence,
203 C
vV=——7+ —.
7T at
Recalling v = y~2,
2= —2—$3 + g or = !
y - 7 .CU47 y - 2333 C

7t
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Applying the initial condition y(1) = 1:

p 9
172=— = l=—4C = C=-=.
7 Ty 7T 7

Thus the particular solution is

1 V7
y(r) = = :

e T o

7 +7x4

Interval of Convergence. For y(x) to be real and defined, the denomina-
tor must be positive:

225 9
L S0 = 2274950 — o<

7 Tt
9
0<x<vg%L%.

Therefore, the solution is valid for x > 0 and = < {/9/2.

\Vl o)

Hence,

7 +7x4

1 9
y(x) = , 0<:U<\7/:
= 2

Separable Equations

We now consider nonlinear first-order differential equations, starting with
separable equations. A differential equation is separable if it can be written
as:

NP = M)

This means all y-terms are with dy and all x-terms are with dz. Rear-
ranging gives:
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We solve by integrating both sides:

[Nwady= [ () as

This gives an tmplicit solution, which may or may not be solvable for an
explicit solution y = y(x).

Be aware of the interval of validity: the solution is only valid where it
is defined (no division by zero, negative logs, etc.).

Most separable equations can be solved using this straightforward tech-
nique. We begin with a simple example to illustrate the method.

Example 1
Solve the differential equation:
dy 9 1
29 _ 1) = —
This is a separable equation:
y2dy = 6x dx

Integrating both sides:

1
/y_Qdy:/&vd:c = —§:3x2+0

Apply the initial condition y(1) = %:

1
——— =3(1)?*+C —25=3+C=(C=-28
/%5 (1)° + = +C =
So the solution is:
1 1
— = = 32% — 28 L —
g F = W) =g

Interval of Validity:
To avoid division by zero, we require:

/28
28 -3 40 = a2#+ < ~ +3.055
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The valid intervals are:

(—o00, —4/28/3), (—+/28/3,/28/3), (1/28/3,0)

Since the initial condition is at x = 1, the correct interval of validity is:

—/28/3 <z < 1/28/3

Note: With different initial conditions, the solution remains the same,
but the interval of validity changes:

o If y(—4) = — 5, then the interval is (—oo, —1/28/3)

o If y(6) = —55, then the interval is (1/28/3, o)

Example 2

Solve the IVP:
dy 302 4+ 4 — 4

pr— ]_:
7 21 y(1) =3

This is a separable equation. Rearranging and integrating:

(2y — 4)dy = (32* + 4w — 4)dx

/(2y—4)dy:/(3x2—|—4x—4)d1’$y2—4y:x3—|—2x2—4x+0
Apply the initial condition y(1) = 3:
32-4(3) = 1’4+2(1)*~4(1)+C = 9-12 = 142—44C = -3 = —14+C = C = -2
So the implicit solution is:
Y —dy = 2° + 227 — 4o — 2

Solve explicitly using the quadratic formula:

44 /16 +4(2% + 222 — 4z — 2)
B 2

Y =24 \/a3+ 222 — dx + 2

Use the initial condition to determine the correct sign:

y(1)=2+V1+2-4+2=24+V1=2+1=y(1) =3 = use +
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Thus, the explicit solution is:

y(z) = 24 Va3 + 222 — 4o + 2

Interval of Validity:
We require the argument of the square root to be non-negative:

224+ 20% — 4 +2>0

Graphing, the real root is approximately x ~ —3.36523, so the interval of
validity is:

x> —3.36523

which contains x = 1, satisfying the initial condition.

Homogeneous Differential Equations

1. Definition.

A first-order differential equation of the form

dy

—F
o (z,y)

is said to be **homogeneous™* if the function F(x,y) satisfies
F(tz,ty) = F(x,y) for all t > 0.

That is, F'(z,y) is homogeneous of degree 0.
Equivalently, the differential equation

M(x,y) dx + N(z,y)dy =0

is homogeneous if both M and N are homogeneous functions of the **same
degree**,

Recall: a function f(z,y) is homogeneous of degree n if

f(txvty) - tnf('ray)'
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2. Standard Form and Substitution.

If y
Y Y
yr(2)
dx x
then the equation is homogeneous. We use the substitution:
dy dv

=vr = =V+T—.
Y dz dz

Substitute these into the original equation. This converts the given ho-
mogeneous equation into a **separable equation™ in v and x.

3. Method of Solution.

d
1. Express the given ODE as d—y = F(y/x).
T

d d
2. Substitute y = vx, so that Y _ v+ ZE—U.
dx dx

w

. Replace y/x by v everywhere and simplify.

4. Rearrange to get a separable equation in v and x:

Do) > =D
dr WY flv) =

5. Integrate both sides and then back-substitute v = y/x to get the final
relation between x and y.

4. Example.

Solve
dy x4y

de  x—vy

Solution. The right-hand side depends only on y/x, so the equation is
homogeneous.
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Let y = vx. Then

Substituting in:

dv x4+ vz 1+
V+r— = = .
de x — vz 1—w

Simplify:
dv 1+w l+v—v(l—v) 1+9?
dx 1—w 1—w 1—w
Hence:
1—v dx
dv = —.
1+ 02 x

Integrate both sides:

Split the integral on the left:

dv vdv
— =1 )
/1+v2 /1+v2 nlel+C

The first term is tan~' v, and the second is 5 In(1 + v?). Thus:

1
tan ' v — 5 In(1+v?) = Inlz| + C.

Substituting back v = £, we get

)

2

1
tanl(g) — —ln(l—l— Y > =In|z| + C.

T 2 2

Simplifying the logarithmic term:

-1(Y _1 2 2 _ v
tan <x) 21n(x +y*)=C".

Hence, the general solution is:

vy 1 2 2\ _
tan ($> 21n(:z: +y°) =C.
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5. Remarks.

e The key idea in solving homogeneous equations is the substitution y =
V.

e This converts the equation into a separable form.

e After integration, always replace v by y/x to get the final result.

Exact Equations

We now explore a new class of first-order differential equations: exact equa-
tions. Before diving into the solution method, we demonstrate the concept
using an example.

Example 1

d
2:1:y—9x2+(2y+x2+1)£:()

Assume a function ¥(x,y) exists such that:

U(z,y) =y* + (2* + 1)y — 32°

Then,
ov ov
— =21y — 9%, — =2 41
So the equation becomes:
d
W, y(@)] = 0= V(z,y) = C

Implicit solution:
Y+ (2? + 1)y —32° =C

General Form
A differential equation is exact if:

d
M(S&?JHMJM)%ZO



and there exists a function ¥(z,y) such that:

ov_ v
ox oy
Then the solution is:
U(r,y) =C
To test for exactness:
oM B ON
oy  Ox
Example 2:
2 2 dy
20y — 9x° + 2y + x +1)d— =0, y(0)=-3
T

M:2xy—9x2:>My:2x, N=2y+a2>+1=N, =2

Exact equation.
Integrate M with respect to x:

Uany) = [ 20y —95%) do = oy 36° + by

Differentiate with respect to y:

o
8_y2x2+h’(y)=2y+fc2+1=>h’(y)=2y+1=>h(y)=y2+y

So:
U(z,y) =2’y —3° +y° +y

Implicit solution:
oy -3+ +y=C
Apply initial condition y(0) = —3:

0+9-3=C=C=6

2+ (22 4+ 1)y — 32° =6

Solve using quadratic formula:

(22 +1)2 4+ 1223 4+ 24
2

y:—(x2+1)i\/

91
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Choose — sign based on initial condition:

vVt + 1223 + 222 + 25

y(a) = —(2* +1) 5

Interval of validity:

21223 + 202 +25 > 0= x> —1.396911133

Example 3
20y” +4 =203 —2%)y, y(-1)=8

Rewriting:
22y? + 44 2(2*y — 3)y' =0

M =2zy*+4, N =22%y—6
M, = 4xy, N, = 4xy = Exact
Integrate N w.r.t. y:

U(a,y) = / (22% — 6)dy = a®” — 6y + h(z)

Differentiate w.r.t. x:

v
g— =2zxy* + h(z) = 2vy° +4 = H(x) =4 = h(x) = 4z
T

U(z,y) = x*y* — 6y + 4x

Implicit solution:
22y — 6y + 4z =C

Apply initial condition:
64—48 —4=C=C =12

2y — 6y + 4 — 12 =10
Solve for y:

6 + /36 + 4822 — 1623 V9 + 1222 — 423
222 2
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Use initial condition to choose “+7:

9+ 1222 — 4a3
-I-\/ 5

y(z) =3 "

Interval of validity:

r#0, 9+122% —42° > 0= 2 € (—o0,0) since z = —1 is valid

(—OO, 0)

Non-Exact Differential Equations

1. Definition.

A first-order differential equation of the form
M(z,y)dx + N(z,y)dy =0

is called **exact™* if there exists a function F(x,y) such that

That is, the equation represents the total differential dF" = 0.
If this condition is not satisfied—i.e.
oM  ON
Oy ox’
then the equation is said to be **non-exact™*.

2. The Idea.

Even when the given equation is not exact, it may be possible to multiply it
by a function u(z,y), called an **integrating factor™*, which makes it exact.
Thus we look for u(z,y) such that

p(x,y) M(z,y) de + p(z,y) N(z,y) dy =0

becomes exact.
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3. Condition for Exactness.

For an equation M dx + N dy = 0, exactness requires

oM  ON
oy  Ox’
If this does not hold, one may find an integrating factor u satisfying:
O(uM) _ O(uN)

oy  Ox

4. Common Cases for Integrating Factors.

1. If
1 fOM ON
N \ Oy ox
is a function of x only, then an integrating factor depending on x exists
and is given by

plz) = e/ E-F

1 (ON OM

M \ Ox dy
is a function of y only, then an integrating factor depending on y exists
and is given by

M_M)d

M(y) — efﬁ( oz oy

5. Example.

Solve
(2zy + y*) dz + (2 + 2xy) dy = 0.

Here,
M = 2zy + v, N = 2% + 2zy.
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Compute the partial derivatives:

_8M 2z + 2 ON 2z + 2
oM  ON
Thus, RS so in fact the equation is exact. For demonstration, let us
Yy x

modify slightly to make it non-exact.
Consider instead:

(2zy + v?) dv + (2° + 3zy) dy = 0.

Now,
oM ON
—— =2 +2, —— =2x+3y,
By Y i Y
which are not equal; hence it is non-exact.
We test for an integrating factor depending on x:

1 fOM ON 1 —y

— =) =——](2 2y) — 22+ 3y)| = ——

N(@y (9x> x2+3a:y[(x+ y) = (20 +3y)] 2% + 3y’
which is not a function of = alone.

Next, test for an integrating factor depending on y:

1 (ON OM 1 y 1
— | =— = = —|(22+3y)—(2z+2y)| = = .
M ( oxr Oy ) 2xy + 1> [(20+3y)—(25+2y)] 2ey +vy>  y(2x/y+ 1)

This expression simplifies to a function of y only when z/y is constant (i.e.
along straight lines), so no simple u(y) exists in this case.
However, note that the equation can be divided by %2 to yield a homoge-

neous form:
2
(2£—|—1> dx + (f) —i—3£ dy =0,
Y Y Y

which may be solved by the substitution v = x/y.

Hence, when an equation is not exact, one either looks for an integrating
factor or converts it into a homogeneous or separable form.
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6. Summary.

: . oM  ON
e An exact equation satisfies — = —.
Yy Ox
e A non-exact equation can sometimes be made exact using an integrating
factor pu(x) or u(y).

e If no simple integrating factor exists, attempt other transformations
(e.g. homogeneous substitution).



