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Sequences

1. Definition of a Sequence

A sequence is a function from the natural numbers N to the real numbers
R. It is usually written as:

{an}∞n=1 = a1, a2, a3, . . .

Each term an is called the nth term of the sequence.

Examples

� an = 1
n ⇒

{
1, 12 ,

1
3 , . . .

}
� an = (−1)n ⇒ {−1, 1,−1, 1, . . . }

� an = n2 ⇒ {1, 4, 9, 16, . . . }

2. Convergence of Sequences

A sequence {an} converges to a real number L if:

∀ε > 0, ∃N ∈ N such that n ≥ N ⇒ |an − L| < ε.

We denote this as limn→∞ an = L, or simply an → L.
Geometric Interpretation:
To visualize this definition, we draw a horizontal band of width 2ε centered

at L. This band represents the ε-neighborhood of the limit. The key idea is
that, while a few early terms may fall outside this band, eventually all terms
of the sequence lie inside it.
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n

an

L
L+ ε

L− ε

an → L

The dashed line at y = L shows the limit of the sequence (an). The two
dashed lines at y = L + ε and y = L − ε form a horizontal band around L,
called the ε-neighborhood. This band represents a tolerance zone: how close
the sequence terms must be to the limit. As shown, while a few early terms
lie outside this band, from a certain index N onward, all terms lie within it
— that is, they satisfy |an − L| < ε. This illustrates the formal definition of
convergence: the terms of the sequence get arbitrarily close to the limit and
eventually stay there.

Divergence

If a sequence does not converge, it is said to diverge. For example:

� an = n diverges to infinity.

� Let an = (−1)n. Then:

a1 = −1, a2 = 1, a3 = −1, a4 = 1, . . .

This sequence does not converge. It keeps jumping between −1 and 1,
so:

lim
n→∞

an does not exist.

.

3. Properties of Convergent Sequences

Let an → a and bn → b. Then:

� an + bn → a+ b

� anbn → ab
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� If b ̸= 0 and bn ̸= 0 for all n, then an
bn

→ a
b

� |an| → |a|

Also, every convergent sequence is bounded.

4. Examples

Example 1:

an =
2n2 − 3n

3n2 + 5n+ 3

Highest powers dominate:

lim
n→∞

an = lim
n→∞

2n2

3n2
=

2

3

Justification: Divide numerator and denominator by n2:

an =
2n2 − 3n

3n2 + 5n+ 3
=

2− 3
n

3 + 5
n + 3

n2

.

Since
1

n
→ 0 and

1

n2
→ 0 as n → ∞,

we get:

lim
n→∞

an =
2− 0

3 + 0 + 0
=

2

3
.

General Rule: For an = P (n)
Q(n) :

� If degP < degQ, then lim an = 0

� If degP = degQ, then lim an equals the ratio of leading coefficients

� If degP > degQ, then lim an = ∞ or −∞ (divergent)
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Example 2: Geometric and Power Sequences

Geometric Sequences

Let (an) be the geometric sequence an = rn for a fixed real r and n ∈ N.
Then

lim
n→∞

rn =



0, if |r| < 1,

1, if r = 1,

does not exist (oscillates between ±1), if r = −1,

+∞, if r > 1,

diverges (unbounded and sign-alternating), if r < −1.

1) Case: r > 0. For r > 0, we may write

rn = en ln r.

� If 0 < r < 1, then ln r < 0, hence n ln r → −∞ and thus rn = en ln r → 0.

� If r = 1, then rn = 1 for all n, so lim rn = 1.

� If r > 1, then ln r > 0, hence n ln r → +∞ and rn = en ln r → +∞
(diverges).

2) Case: r < 0. Write r = −s with s = |r| > 0. Then

rn = (−1)nsn and |rn| = sn.

� If −1 < r < 0, then 0 < s < 1. From the positive-base case, sn → 0.
Since |rn| = sn → 0, we have −sn ≤ rn ≤ sn for all n, so by the squeeze
theorem rn → 0.

� If r = −1 (i.e., s = 1), then rn = (−1)n so the even subsequence equals
1 and the odd subsequence equals −1. The two subsequences have
different limits, hence lim rn does not exist (oscillation).

� If r < −1, then s = |r| > 1 and sn → ∞. Consequently |rn| = sn →
∞ while the factor (−1)n makes the signs alternate. The sequence is
unbounded and has no limit.

This completes the classification.
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Power sequence (also called ”dual geometric”):

lim
n→∞

nr =


0, if r < 0,

1, if r = 0,

∞, if r > 0.

� n0 = 1 for all n,

� nr → ∞ if r > 0,

� nr =
1

n−r
→ 0 if r < 0.

Example 3:

Show that

lim
n→∞

n · sin
(
1

n

)
= 1.

As
1

n
→ 0 and lim

x→0

sinx

x
= 1,

we rewrite:

n · sin
(
1

n

)
=

sin
(
1
n

)
1
n

→ 1.

General Rule:

� If limx→0 f(x) = L, then limn→∞ f
(
1
n

)
= L.

� If limx→∞ f(x) = L, then limn→∞ f(n) = L.

Example 4

If α > 0, then:
lim
n→∞

α1/n = 1.

Let an = α1/n. Then:

ln an =
lnα

n
→ 0.

So,
an = eln an → e0 = 1.
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Example 5

The sequence
(
n1/n

)
converges to 1:

lim
n→∞

n1/n = 1.

Let an = n1/n. Then:

ln an =
lnn

n
.

To evaluate the limit, apply L’Hôpital’s Rule to:

lim
n→∞

lnn

n
.

Since both numerator and denominator tend to ∞, we differentiate top
and bottom:

lim
n→∞

lnn

n
= lim

n→∞

1/n

1
= 0.

Therefore:

ln an → 0 ⇒ an = eln an → e0 = 1.

5. Monotone Sequences

A sequence {an} is:

� Increasing if an+1 ≥ an for all n

� Decreasing if an+1 ≤ an for all n

� Monotonic if it is either increasing or decreasing

Theorem (Monotone Convergence Theorem): If a sequence is mono-
tonic and bounded, then it converges.

Example 1:

Let an = 1− 1
n . It is increasing and bounded above by 1, so the sequence an

is convergent.
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n

an
L = 1limit

Monotone Increasing Sequence

Explanation:

� The blue points represent terms an of a sequence.

� Each term is greater than or equal to the previous — the sequence is
increasing.

� The red dashed line is the horizontal asymptote at L = 1, showing the
limit.

� The sequence approaches the limit from below but never exceeds it.

Example 2: Sequence of partial sum

Let an be a sequence of non-negative numbers, meaning that an ≥ 0 for every
n ∈ N. The sequence of partial sums associated with an is defined by:

SN =
N∑
k=1

ak = a1 + a2 + · · ·+ aN .

This means that :

S1 = a1,

S2 = a1 + a2,

S3 = a1 + a2 + a3,
...

Since each term an ≥ 0, adding a new term always makes the total sum stay
the same or increase:

SN+1 − SN = aN+1 ≥ 0.

We now consider two possible situations:
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� Case 1: The sequence (SN) is bounded above.
Since SN is increasing and bounded, the Monotonic Convergence The-
orem tells us that SN converges to a finite limit.

� Case 2: The sequence (SN) is not bounded above.
In this case, the partial sums grow without limit, that is,

lim
N→∞

SN = ∞.

6. Squeeze Theorem

Theorem: Let {an}, {bn}, {cn} be sequences such that:

an ≤ bn ≤ cn for all n ≥ N,

and if limn→∞ an = limn→∞ cn = L, then:

lim
n→∞

bn = L.

Example 1:

Show that limn→∞
sinn
n = 0.

Since −1 ≤ sinn ≤ 1, we have:

−1

n
≤ sinn

n
≤ 1

n
.

Both bounds go to 0, so by the Squeeze Theorem:

lim
n→∞

sinn

n
= 0.

Exercises

Exercise 1

Decide whether the following sequences converge or diverge; if they converge,
find the limit:

an =
5n

en
, bn =

n2

2n + 1
, cn =

lnn

n
.
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Figure 1: Points yn = sinn/n squeezed between y = ±1/x toward 0.

Solution

We analyze each sequence separately.

(1) an =
5n

en
.

Consider the function f(x) =
5x

ex
. Then an = f(n). As x → ∞, this is an

indeterminate form ∞
∞ . By L’Hôpital’s rule,

lim
x→∞

5x

ex
= lim

x→∞

5

ex
= 0.

Hence,
lim
n→∞

an = 0.

(2) bn =
n2

2n + 1
.

Define f(x) =
x2

2x + 1
. As x → ∞, this is of the form ∞

∞ . Applying
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L’Hôpital’s rule twice:

lim
x→∞

x2

2x + 1
= lim

x→∞

2x

2x ln 2
= lim

x→∞

2

(ln 2)2 2x
= 0.

Therefore,

lim
n→∞

bn = 0.

(3) cn =
lnn

n
.

Consider f(x) =
lnx

x
. This is again an ∞

∞ form. By L’Hôpital’s rule:

lim
x→∞

lnx

x
= lim

x→∞

1/x

1
= 0.

Thus,

lim
n→∞

cn = 0.

Exercise 2

Discuss the convergence of the following sequences:

(i) (−1.2)n

(ii)
1

2n

(iii)
cos2(n)

3n

(iv)
4n3 + 5n+ 1

2n3 + n2 + 5

(v)
(
1 +

1

n

)n
(vi) n1/n
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Solution

(i) an = (−1.2)n. This is a geometric sequence with common ratio r = −1.2.
For a geometric sequence an = rn:

|r| < 1 ⇒ an → 0,

|r| = 1 ⇒ an oscillates or is constant,

|r| > 1 ⇒ |an| → ∞ (diverges).

Since |r| = 1.2 > 1, the sequence diverges.

(ii) bn =
1

2n
= (

1

2
)n. This is a geometric sequence with common ratio

r = −1.2. Therfore we have
bn → 0.

(iii) cn =
cos2(n)

3n
. The numerator satisfies 0 ≤ cos2(n) ≤ 1, while the

denominator grows without bound as 3n → ∞. Therefore,

0 ≤ cn ≤ 1

3n
→ 0.

By the squeeze theorem, cn → 0.

(iv) dn =
4n3 + 5n+ 1

2n3 + n2 + 5
. Dividing numerator and denominator by n3:

dn =
4 + 5

n2 +
1
n3

2 + 1
n + 5

n3

−−−→
n→∞

4

2
= 2.

(v) en =
(
1 +

1

n

)n
. Take logarithms:

ln(en) = n ln
(
1 + 1

n

)
=

ln(1 + 1/n)

1/n
.

Let x = 1/n → 0+. Then

lim
n→∞

ln(en) = lim
x→0+

ln(1 + x)

x
= 1.

Thus limn→∞ en = e.
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(vi) fn = n1/n. Take logarithms:

ln(fn) =
lnn

n
.

As n → ∞, this is ∞
∞ . By L’Hôpital’s rule:

lim
x→∞

lnx

x
= lim

x→∞

1/x

1
= 0.

So ln(fn) → 0, which implies fn → e0 = 1.

Exercise 3

Decide whether the following sequences converge or diverge; if they converge,
find the limit:

an =
√
n+ 1−

√
n, bn =

n2

2n− 1
− n2

2n+ 1
.

Solution

(1) an =
√
n+ 1−

√
n.

Rationalize the difference:

an =
(
√
n+ 1−

√
n)(

√
n+ 1 +

√
n)√

n+ 1 +
√
n

=
(n+ 1)− n√
n+ 1 +

√
n
=

1√
n+ 1 +

√
n
.

Hence

0 < an =
1√

n+ 1 +
√
n
≤ 1

2
√
n

−−−→
n→∞

0,

so by squeeze theorem lim
n→∞

an = 0.

(2) bn =
n2

2n− 1
− n2

2n+ 1
.

Combine the fractions:

bn = n2

(
1

2n− 1
− 1

2n+ 1

)
= n2 (2n+ 1)− (2n− 1)

(2n− 1)(2n+ 1)
=

2n2

4n2 − 1
.

Therefore

lim
n→∞

bn = lim
n→∞

2n2

4n2 − 1
=

2

4
=

1

2
.



Infinite series

1. Introduction

An infinite series is the sum of the terms of a sequence:

∞∑
n=1

an = a1 + a2 + a3 + · · ·

To analyze the convergence of this series, we consider the sequence of par-
tial sums:

SN =
N∑
k=1

ak.

We say that the series
∑∞

n=1 an converges if the limit of the sequence {SN}
exists and is finite. In that case, the value of the infinite sum is defined as:

∞∑
n=1

an = lim
N→∞

SN .

If this limit does not exist or is infinite, the series is said to diverge.

2. Telescoping Series

Evaluate the infinite series:
∞∑
n=1

1

n(n+ 1)
.

We first decompose the general term using partial fractions:

1

n(n+ 1)
=

1

n
− 1

n+ 1
,

15
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and then consider the partial sum:

SN =
N∑
n=1

(
1

n
− 1

n+ 1

)
.

We expand the partial sum:

SN =

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·

+

(
1

N
− 1

N+ 1

)
.

After cancellation, only the first and the last term remain:

SN = 1− 1

N+ 1
.

Taking the limit as N → ∞, we find the sum of the infinite series:

∞∑
n=1

1

n(n+ 1)
= lim

N→∞
SN = lim

N→∞

(
1− 1

N + 1

)
= 1.

The series
∞∑
n=1

1

n(n+ 1)
converges, and its sum is

∞∑
n=1

1

n(n+ 1)
= 1.

General Rule (Telescoping Form):

If a sequence satisfies an = bn − bn+1, then the partial sum telescopes:

SN =
N∑
n=1

an = b1 − bN+1 ⇒
∞∑
n=1

an = b1 − lim
N→∞

bN+1,

provided the limit exists.
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Exercise

Evaluate the series ∞∑
n=3

1

n(n+ 1)
.

First, we must establish that the series converges. By recalling the result
from the previous example,

∞∑
n=1

1

n(n+ 1)
=

1

1 · 2
+

1

2 · 3
+

1

3 · 4
+ · · · = 1.

Hence

∞∑
n=3

1

n(n+ 1)
=

1

3 · 4
+

1

4 · 5
+ · · ·

=
( 1

1 · 2
+

1

2 · 3
+

1

3 · 4
+

1

4 · 5
+ · · ·

)
−
( 1

1 · 2
+

1

2 · 3

)
=

∞∑
n=1

1

n(n+ 1)
−
( 1

1 · 2
+

1

2 · 3

)
= 1−

(1
2
+

1

6

)
.

Compute explicitly with a common denominator 6:

1

2
=

3

6
,

1

6
=

1

6
⇒ 1

2
+

1

6
=

3

6
+

1

6
=

4

6
=

2

3
.

So ∞∑
n=3

1

n(n+ 1)
= 1− 2

3
=

1

3
.

Application to the Geometric Series
∑∞

n=0 r
n:

(1− r)
N∑
n=0

rn =
N∑
n=0

(
rn − rn+1

)
= (r0 − r1) + (r1 − r2) + · · ·+ (rN − rN+1)

= r0 − rN+1 = 1− rN+1.
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Dividing both sides by 1− r, we obtain the formula for the partial sum:

N∑
n=0

rn =
1− rN+1

1− r
, r ̸= 1.

Geometric Series Convergence (”r-Test”):

∞∑
n=0

rn converges ⇐⇒ |r| < 1.

Sum Formula:

∞∑
n=0

rn =


1

1− r
, if |r| < 1,

diverges, if |r| ≥ 1.

Example:
∞∑
n=0

(
1

2

)n

=
1

1− 1
2

= 2.

3. Basic Properties

� Linearity:
∞∑
n=1

(an + bn) =
∞∑
n=1

an +
∞∑
n=1

bn

� Multiplication by a constant:

∞∑
n=1

can = c
∞∑
n=1

an

Exercise

Evaluate the series

(a)
∞∑
n=0

2n+1

3n−2
, (b)

∞∑
n=0

2n + 3n

5n
.
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(a)
∞∑
n=0

2n+1

3n−2
.

Rewrite the general term as a geometric term:

2n+1

3n−2
=

2n+1 3 2

3n
= 9 · 2

n+1

3n
= 18 · 2

n

3n
= 18

(
2

3

)n
.

Hence
∞∑
n=0

2n+1

3n−2
=

∞∑
n=0

18

(
2

3

)n
= 18

∞∑
n=0

(
2

3

)n
.

The ratio is r = 2
3 with |r| < 1, so

∞∑
n=0

rn =
1

1− r
⇒

∞∑
n=0

(
2

3

)n
=

1

1− 2
3

=
1
1
3

= 3.

Therefore
∞∑
n=0

2n+1

3n−2
= 18 · 3 = 54 .

(b)
∞∑
n=0

2n + 3n

5n
.

By linearity, split the series into two:

∞∑
n=0

2n + 3n

5n
=

∞∑
n=0

(
2

5

)n
+

∞∑
n=0

(
3

5

)n
.

Each is a geometric series with ratios r1 = 2
5 and r2 = 3

5 , both satisfying
|ri| < 1, so they converge and

∞∑
n=0

(
2

5

)n
=

1

1− 2
5

=
5

3
,

∞∑
n=0

(
3

5

)n
=

1

1− 3
5

=
5

2
.

Therefore,
∞∑
n=0

2n + 3n

5n
=

5

3
+

5

2
=

10

6
+

15

6
=

25

6
.



20

Necessary condition for convergence

If the series
∞∑
n=1

an converges, then

lim
n→∞

an = 0.

The converse is false: having an → 0 does not guarantee that the series
converges.

Why? Let the partial sums be Sn :=
∑n

k=1 ak. Then

Sn − Sn−1 = (a1 + · · ·+ an)− (a1 + a2 + · · ·+ an−1) = an (n ≥ 2).

If
∑∞

n=1 an converges, the sequence (Sn) converges to the limit S (S =∑∞
n=1 an). Hence

lim
n→∞

an = lim
n→∞

(Sn − Sn−1) = lim
n→∞

Sn − lim
n→∞

Sn−1 = S − S = 0.

4. Convergence Tests for Positive Series

We are concerned with series
∑∞

n=1 an, such that an ≥ 0 for all n (positive
series).

(a) nth-Term Test

If lim
n→∞

an ̸= 0 (or the limit does not exist), then the series
∑∞

n=1 an diverges.

Examples.

1. an = 1. Here limn→∞ an = 1 ̸= 0, so
∑∞

n=1 1 diverges. Partial sums:
S1 = 1, S2 = 2, S3 = 3, . . . , SN = N → ∞.

2. an = (−1)n. The limit limn→∞(−1)n does not exist (terms oscillate).
Partial sums: S1 = −1, S2 = 0, S3 = −1, S4 = 0, . . . ; (SN) does not
converge, so the series diverges.
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3. Consider ∞∑
n=1

n

n+ 1
.

By the nth-term test:

lim
n→∞

n

n+ 1
= lim

n→∞

1

1 + 1
n

= 1 ̸= 0,

so the series diverges.

Remark (why this test is only one-way). The condition an → 0 is

necessary but not sufficient : for example, an =
1

n
→ 0 but the harmonic

series
∑∞

n=1

1

n
diverges.

(b) Integral Test

Let f : [1,∞) → R be a function such that:

� f is continuous,

� f(x) ≥ 0 for all x ≥ 1,

� f is decreasing on [1,∞),

� f(n) = an for all integers n ≥ 1.

Then ∞∑
n=1

an converges ⇐⇒
∫ ∞

1

f(x) dx converges.

Application: The p-Series Test
Consider the series ∞∑

n=1

1

np
, where p > 0.

Let f(x) = 1
xp , which is continuous, positive, and decreasing for x ≥ 1 when

p > 0. We apply the integral test by evaluating∫ ∞

1

1

xp
dx = lim

t→∞

∫ t

1

1

xp
dx.
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Case 1: p ̸= 1 ∫ t

1

1

xp
dx =

[
x1−p

1− p

]t
1

=
t1−p − 1

1− p
.

� If p > 1, then 1 − p < 0, so t1−p → 0 as t → ∞, and the integral
converges to 1

p−1 .

� If p < 1, then 1− p > 0, so t1−p → ∞, and the integral diverges.

Case 2: p = 1 ∫ t

1

1

x
dx = ln t → ∞ as t → ∞.

So the integral diverges.

Conclusion: ∫ ∞

1

1

xp
dx =

{
Converges, if p > 1,

Diverges, if p ≤ 1.

By the integral test, the same result holds for the series:

∞∑
n=1

1

np
=

{
Converges, if p > 1,

Diverges, if p ≤ 1.

Examples:

�

∞∑
n=1

1

n2
: converges (since p = 2 > 1)

�

∞∑
n=1

1

n
: diverges (harmonic series, p = 1)

�

∞∑
n=1

1√
n
: diverges (since p = 1

2 < 1)
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(c) Comparison Test

If 0 ≤ an ≤ bn and
∑

bn converges, then
∑

an also converges. If
∑

an
diverges and bn ≥ an ≥ 0, then

∑
bn also diverges.

Let

an =
1

n2 + 1
, bn =

1

n2
(n ≥ 1).

Then 0 ≤ an ≤ bn since n2 + 1 ≥ n2. The series
∑∞

n=1 bn =
∑

1/n2 + 1
converges, hence by the Comparison Test,

∞∑
n=1

1

n2 + 1
converges.

(d) Limit Comparison Test

Let an, bn > 0. If

lim
n→∞

an
bn

= c ∈ (0,∞),

then either both
∑

an and
∑

bn converge, or both diverge.
Method (quick).

� Pick a comparison series
∑

bn you already know (typically a geometric
or p-series).

� Compute L = lim
n→∞

an
bn

.

� If 0 < L < ∞, the two series have the same behavior.

� If L = 0 and
∑

bn converges, then
∑

an converges.

� If L = ∞ and
∑

bn diverges, then
∑

an diverges.

Examples: rational terms (compare with a p-series)

Example 1 (convergent).

∞∑
n=1

2n3 + 5

9n5 + 1
.
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Compare with
∑

1
n2 :

lim
n→∞

2n3 + 5

9n5 + 1
1/n2

= lim
n→∞

2n5 + 5n2

9n5 + 1
=

2

9
∈ (0,∞).

Since
∑

1
n2 converges, the given series converges.

Example 2 (divergent).
∞∑
n=1

7n+ 4

3n2 + 1
.

Compare with
∑

1
n :

lim
n→∞

7n+ 4

3n2 + 1
1/n

= lim
n→∞

7n2 + 4n

3n2 + 1
=

7

3
> 0.

Since
∑

1
n diverges, the given series diverges.

Examples: comparison with a geometric series

Example 3 (convergent).

∞∑
n=1

an, an =
3n + 2

6n + 1
.

Compare with bn =
(
1
2

)n
:

lim
n→∞

an
bn

= lim
n→∞

3n + 2

6n + 1(
1
2

)n = lim
n→∞

(3n + 2) 2n

6n + 1
= lim

n→∞

6n + 2 · 2n

6n + 1
= 1.

Since
∑(

1
2

)n
converges,

∑
an converges.

Example 4 (divergent).

∞∑
n=1

cn, cn =
8n − 1

5n
.
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Compare with dn =
(
8
5

)n
:

lim
n→∞

cn
dn

= lim
n→∞

8n − 1

5n(
8
5

)n = lim
n→∞

(
1− 1

8n

)
= 1.

Since
∑(

8
5

)n
diverges (ratio > 1),

∑
cn diverges.

( For rational terms poly(n)
poly(n) , match the highest powers (compare with a p-

series). For exponential terms (like 3n, 6n), compare with a geometric series.)

(e) Ratio Test

L = lim
n→∞

an+1

an
� If L < 1: the series converges.

� If L > 1 or L = ∞: the series diverges.

� If L = 1: the test is inconclusive.

Examples.

(a) Convergent (L < 1). an =
5n

n!
.

an+1

an
=

5n+1/(n+ 1)!

5n/n!
=

5

n+ 1
−−−→
n→∞

0 < 1.

Hence
∑

an converges.

(b) Convergent (L < 1). an =
n

3n
.

an+1

an
=

(n+ 1)/3n+1

n/3n
=

n+ 1

n
· 1
3
−−−→
n→∞

1

3
< 1.

Thus
∑

an converges.

(c) Divergent (L > 1). an =
2n

n
.

an+1

an
=

2n+1/(n+ 1)

2n/n
= 2 · n

n+ 1
−−−→
n→∞

2 > 1.

Hence
∑

an diverges.
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(d) Divergent (L = ∞). an = n!.

an+1

an
=

(n+ 1)!

n!
= n+ 1 −−−→

n→∞
∞.

Therefore
∑

an diverges.

(e) Inconclusive case (L = 1).

an =
1

n
⇒ an+1

an
=

n

n+ 1
→ 1 but

∑ 1

n
diverges;

an =
1

n2
⇒ an+1

an
=

n2

(n+ 1)2
→ 1 and

∑ 1

n2
converges.

So when L = 1 the test gives no conclusion.

(f) Root Test

L = lim
n→∞

n
√
an, same conclusions as the Ratio Test.

Examples.

(a) Convergent (L < 1). an =
n5

4n
.

n
√
an =

n
√
n5

n
√
4n

=
n5/n

4
−−−→
n→∞

1

4
< 1.

Hence
∑

an converges.

(b) Convergent (L < 1). an =
n(
5
3

)n =
(3
5

)n
n.

n
√
an =

(3
5

)
n1/n −−−→

n→∞

3

5
< 1,

so
∑

an converges.

(c) Divergent (L > 1). an =
2n

n3
.

n
√
an =

2

n3/n
−−−→
n→∞

2 > 1,

hence
∑

an diverges.
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(d) Divergent (L = ∞). an = n!.

n
√
an =

n
√
n! −−−→

n→∞
∞ (> 1),

therefore
∑

an diverges.

(e) Inconclusive case (L = 1).

an =
1

n
⇒ n

√
an = n−1/n → 1 and

∑ 1

n
diverges;

an =
1

n2
⇒ n

√
an = n−2/n → 1 but

∑ 1

n2
converges.

So when L = 1, the Root Test gives no conclusion.

6. Absolute and Conditional Convergence

� A series
∑

an is said to be absolutely convergent if the series of
absolute values

∑
|an| converges.

� A series
∑

an is said to be conditionally convergent if
∑

an con-
verges, but the series

∑
|an| diverges.

Theorem (Absolute Convergence Implies Convergence): If the series∑
|an| converges, then the original series

∑
an also converges.

The converse is not true. That is, a convergent series
∑

an does not
necessarily imply that

∑
|an| converges. A classical example is the alternating

harmonic series:

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ · · · ,

which converges conditionally, since

∞∑
n=1

∣∣∣∣(−1)n+1

n

∣∣∣∣ = ∞∑
n=1

1

n

diverges (harmonic series).
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(g) Alternating Series Test (Leibniz Test)

If an > 0, decreasing, and lim an = 0, then:

∞∑
n=1

(−1)n+1an converges

�

∑ (−1)n

n2 : absolutely convergent (use p-series test)

�

∑ (−1)n

lnn : conditionally convergent (use Leibniz test)

�

∑
n!
nn : converges (use ratio or root test)

Exercises

Decide whether each series converges or diverges. If it converges, state
whether the convergence is absolute or conditional, and find the sum when
possible.

1.
∞∑
n=1

1

n p
(p > 0)

2.
∞∑
n=2

1

n(lnn)p
(p > 0)

3.
∞∑
n=2

lnn

n2

4.
∞∑
n=1

n

n2 + 1

5.
∞∑
n=1

n2 + 3

n3 − 1

6.
∞∑
n=1

1

n(n+ 1)
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7.
∞∑
n=0

(3
5

)n

8.
∞∑
n=1

n

3n

9.
∞∑
n=0

2n

n!

10.
∞∑
n=1

(−1)n−1

n

11.
∞∑
n=1

(−1)n√
n

12.
∞∑
n=1

(
3n+ 1

2n− 1

)n

13.
∞∑
n=1

(
1 + 1

n

)n
n2

14.
∞∑
n=1

sin
(1
n

)

15.
∞∑
n=2

(−1)n−1 lnn

n

16.
∞∑
n=1

np

2n
(p ∈ R)

17.
∞∑
n=1

(−1)n−1

n p
(p > 0)
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Solutions

1.
∞∑
n=1

1

n p

Integral test. For p > 0, set f(x) = x−p, positive and decreasing on
[1,∞). Then

∫ ∞

1

x−p dx =


[
x1−p

1− p

]∞
1

=
1

p− 1
, p > 1,

∞, p ≤ 1.

Hence
∑

n−p converges ⇐⇒ p > 1; diverges for p ≤ 1.

2.
∞∑
n=2

1

n(lnn)p
(use the integral test)

Let f(x) =
1

x(lnx)p
for x ≥ 2. Then f is positive and decreasing for x

large. With u = lnx so du = dx/x,

∫ ∞

2

dx

x(lnx)p
=

∫ ∞

ln 2

du

up
=


[
u1−p

1− p

]∞
ln 2

=
(ln 2)1−p

p− 1
< ∞, p > 1,

∞, p ≤ 1 (for p = 1 it is
∫∞
ln 2

du
u = ∞).

Therefore
∞∑
n=2

1

n(lnn)p
converges iff p > 1, and diverges for 0 < p ≤ 1.

3.
∞∑
n=2

lnn

n2

Integral test with computation. Let f(x) =
lnx

x2
for x ≥ 2. Then∫ ∞

2

lnx

x2
dx

u=lnx
=

∫ ∞

ln 2

u e−u du =
[
−ue−u

]∞
ln 2

−
∫ ∞

ln 2

(−e−u) du =
ln 2 + 1

2
< ∞.

(Equivalently, integration by parts: u = lnx, dv = x−2dx gives −(lnx+
1)/x.) Hence the series converges absolutely.
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4.
∞∑
n=1

n

n2 + 1

Limit comparison with bn =
1

n
:

lim
n→∞

n
n2+1

1/n
= lim

n→∞

n2

n2 + 1
= 1 ∈ (0,∞).

Since
∑

1
n diverges, the given series diverges.

5.
∞∑
n=1

n2 + 3

n3 − 1

Limit comparison with bn =
1

n
:

lim
n→∞

n2+3
n3−1

1/n
= lim

n→∞

n3 + 3n

n3 − 1
= 1.

Hence it behaves like
∑

1
n and diverges.

6.
∞∑
n=1

1

n(n+ 1)

Telescoping via partial fractions. Note

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Thus SN =
∑N

n=1

(
1
n −

1
n+1

)
= 1− 1

N+1 −−−→N→∞
1. So the series converges

and
∞∑
n=1

1

n(n+ 1)
= 1.

7.
∞∑
n=0

(3
5

)n
Geometric with ratio r = 3

5 , |r| < 1. Sum:

∞∑
n=0

rn =
1

1− r
=

1

1− 3
5

=
5

2
.
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8.
∞∑
n=1

n

3n

Ratio test:

an+1

an
=

(n+ 1)/3n+1

n/3n
=

n+ 1

3n
−−−→
n→∞

1

3
< 1,

hence absolutely convergent. Exact sum: For |r| < 1,

∞∑
n=1

nrn =
r

(1− r)2
.

With r = 1
3 , the sum equals

1/3

(2/3)2
=

3

4
.

9.
∞∑
n=0

2n

n!

Ratio test:
an+1

an
=

2n+1/(n+ 1)!

2n/n!
=

2

n+ 1
→ 0 < 1.

So the series converges absolutely. In fact
∑∞

n=0
2n

n! = e2.

10.
∞∑
n=1

(−1)n−1

n
(alternating harmonic)

Let an = 1
n . Then an+1 ≤ an and an → 0. By Leibniz, the series

converges. Absolute series
∑

1
n diverges ⇒ convergence is conditional.

11.
∞∑
n=1

(−1)n√
n

an = 1√
n
is decreasing to 0. By Leibniz, the series converges. But

∑
1√
n

diverges (p-series with p = 1
2), so not absolute; conditional.

12.
∞∑
n=1

(
3n+ 1

2n− 1

)n
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Root test:

n

√(
3n+ 1

2n− 1

)n

=
3n+ 1

2n− 1
−−−→
n→∞

3

2
> 1.

Hence the terms do not tend to 0 (indeed grow), so the series diverges.

13.
∞∑
n=1

(
1 + 1

n

)n
n2

We know
(
1 + 1

n

)n ↗ e and is bounded by e. Thus

0 ≤ (1 + 1/n)n

n2
≤ e

n2
,

and
∑

e
n2 = e

∑
1
n2 < ∞. By comparison, the series converges abso-

lutely.

14.
∞∑
n=1

sin
(1
n

)
Why sin(1/n) > 0. For n ≥ 1 we have 0 < 1

n ≤ 1 < π
2 . Since sinx > 0

for all x ∈ (0, π) (and in particular on (0, π2 )), it follows that

sin
(

1
n

)
> 0 for every n ≥ 1.

Convergence test (limit comparison with the harmonic series). Com-
pute

lim
n→∞

sin(1/n)

1/n
= lim

x↓0

sinx

x
= 1.

By the Limit Comparison Test with
∑∞

n=1
1
n (which diverges), the series∑∞

n=1 sin(1/n) also diverges.

Explicit lower bound (to see divergence to +∞). From the limit above,
there exists N such that for all n ≥ N ,

sin(1/n)

1/n
≥ 1

2
=⇒ sin(1/n) ≥ 1

2n
.

Hence
∞∑
n=1

sin(1/n) ≥
∞∑

n=N

sin(1/n) ≥ 1

2

∞∑
n=N

1

n
= +∞,
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so the series diverges (to +∞).

15.
∞∑
n=2

(−1)n−1 lnn

n

an =
lnn

n
is decreasing to 0 for n ≥ e since

d

dx

(
lnx

x

)
=

1− lnx

x2
< 0 (x > e).

By Leibniz,
∑

(−1)n−1 lnn
n converges. Absolute divergence:∫ ∞

2

lnx

x
dx =

[
1

2
(lnx)2

]∞
2

= ∞ ⇒
∑ lnn

n
diverges.

16.
∞∑
n=1

np

2n
(p ∈ R)

Ratio test:

an+1

an
=

(n+ 1)p/2n+1

np/2n
=

(n+ 1)p

2np
=

1

2

(
1 +

1

n

)p

−−−→
n→∞

1

2
< 1.

Hence the series converges absolutely for every real p.

17.
∞∑
n=1

(−1)n−1

n p
(p > 0)

an =
1

np
decreases to 0 for p > 0. By Leibniz, the alternating series

converges for all p > 0. Absolute convergence occurs iff p > 1 (since∑
1/np converges exactly for p > 1); for 0 < p ≤ 1 the convergence is

conditional.



Power Series

A real power series centered at x0 ∈ R is an infinite series of the form:

∞∑
n=0

an(x− x0)
n,

where an ∈ R and x ∈ R. If x0 = 0, the series is called a power series centered
at the origin.

Radius and Interval of Convergence

Consider the real power series centered at x0 ∈ R:
∞∑
n=0

an(x− x0)
n.

There exists a non-negative number R ∈ [0,∞], called the radius of
convergence, such that:

� The series converges absolutely for all x ∈ R such that |x−x0| < R,

� The series diverges for all x ∈ R such that |x− x0| > R.

x
Region of absolute convergence ??

Region of doubtRegion of doubt

DivergenceDivergence
x0x0 −R x0 +R

The radius of convergence R can be computed using either the Ratio
Test or the Root Test. Suppose one of the following limits exists (possibly

35



36

infinite):

L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ , or L = lim
n→∞

n
√

|an|.

Then the radius of convergence is given by:

R =


1

L
if L ∈ (0,∞),

∞ if L = 0,

0 if L = ∞.

The corresponding interval of convergence is:

� If R = ∞, the series converges absolutely for all x ∈ R; thus, the
interval of convergence is R.

� If R ≥ 0, the series converges absolutely on the open interval (x0 −
R, x0 +R).

At the boundary points x = x0−R and x = x0+R, the behavior of the
series is generally uncertain. Each endpoint must be tested separately:
the series may converge conditionally , or it may diverge . There is no
general rule; it depends on the specific form of the series.

Example 1: Geometric Series

Consider the geometric series:

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · .

This is a power series centered at x0 = 0, with an = 1 for all n.
We apply the ratio test to determine the values of x ∈ R for which the

series converges:

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

|x| = |x| (x ̸= 0).

According to the Ratio Test:

� The series converges if |x| < 1,



37

� The series diverges if |x| > 1,

� The test is inconclusive if |x| = 1.

Thus, the radius of convergence is:

R = 1.

Behavior at the Boundary

We must check convergence manually at the endpoints:

� At x = 1:

∞∑
n=0

1n =
∞∑
n=0

1 = 1 + 1 + 1 + · · · ⇒ diverges.

� At x = −1:

∞∑
n=0

(−1)n = 1− 1 + 1− 1 + · · · ⇒ diverges.

This is the Grandi series, which oscillates and does not converge.

Conclusion:

∞∑
n=0

xn converges if and only if |x| < 1.

Radius of convergence: R = 1
Interval of convergence: (−1, 1)

Example 2: Harmonic-Like Power Series

Consider the series:

∞∑
n=1

xn

n
=

x

1
+

x2

2
+

x3

3
+ · · · .

This is a power series centered at x0 = 0, with an = 1
n .
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Step 1: Apply the Ratio Test

We apply the ratio test to determine for which values of x ∈ R the series
converges:

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

n+ 1
· n

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣x · n

n+ 1

∣∣∣∣ = |x|. (x ̸= 0)

Conclusion from Ratio Test:

� The series converges if |x| < 1,

� The series diverges if |x| > 1,

� The test is inconclusive at |x| = 1.

So, the radius of convergence is:

R = 1.

Step 2: Analyze the Boundary |x| = 1

We must test convergence at the endpoints.

� At x = 1:
∞∑
n=1

1

n
= harmonic series ⇒ diverges.

� At x = −1:
∞∑
n=1

(−1)n

n
= −

∞∑
n=1

(−1)n+1

n

This is the alternating harmonic series, which satisfies the condi-
tions of the Alternating Series Test:

– 1
n is positive and decreasing,

– limn→∞
1
n = 0,

⇒ Converges (conditionally).
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Conclusion:
∞∑
n=1

xn

n
converges for x ∈ [−1, 1),

with:

� Radius of convergence: R = 1

� Interval of convergence: [−1, 1)

Example 3: Exponential Series

Consider the series:
∞∑
n=1

xn

n!
=

x

1!
+

x2

2!
+

x3

3!
+ · · · .

This is a power series centered at x0 = 0, with an = 1
n! .

Step 1: Apply the Ratio Test

We apply the ratio test to determine for which values of x ∈ R the series
converges:

lim
n→∞

∣∣∣∣an+1x
n+1

anxn

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn+1

(n+ 1)!
· n!
xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ x

n+ 1

∣∣∣∣ = 0 x ̸= 0.

Conclusion from Ratio Test:

� Since the limit is 0 for all x ∈ R, the series converges absolutely for
every real number x.

Conclusion:

� Radius of convergence: R = ∞

� Interval of convergence: (−∞,∞)

This series defines the exponential function:

ex =
∞∑
n=0

xn

n!
.
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Example 4: Root Test with a Logarithmic Denominator

Consider the power series:
∞∑
n=2

xn

n log n
.

This is a power series centered at x0 = 0, with coefficients an = 1
n log n for

n ≥ 2.
We evaluate:

lim
n→∞

|an|1/n = lim sup
n→∞

(
1

n log n

)1/n

.

To simplify this, consider the logarithm:

ln

((
1

n log n

)1/n
)

= −1

n
ln(n log n).

We now compute the limit using L’Hôpital’s Rule:

lim
n→∞

− ln(n log n)

n
.

Let f(n) = ln(n log n) and g(n) = n. Since both tend to infinity, we apply
L’Hôpital’s Rule:

lim
n→∞

− ln(n log n)

n
= − lim

n→∞

d

dn
[ln(n log n)]

/
d

dn
[n].(n is real number)

Differentiate numerator and denominator:

d

dn
[ln(n log n)] =

1

n log n
· (log n+ 1) =

log n+ 1

n log n
.

So the limit becomes:

− lim
n→∞

log n+ 1

n log n
= 0.

Therefore,

lim
n→∞

(
1

n log n

)1/n

= e0 = 1.
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Conclusion from the Root Test:

lim
n→∞

|anxn|1/n =
(
lim
n→∞

|an|1/n
)
· |x| = |x|.

So:

� The series converges if |x| < 1,

� The series diverges if |x| > 1,

� The test is inconclusive at |x| = 1.

At x = 1:
We consider the series: ∞∑

n=2

1

n log n
.

To determine convergence, we apply the integral test.
Let

f(x) =
1

x log x
, defined for x ≥ 2.

The function f(x) is:

� positive on [2,∞),

� continuous on [2,∞),

� decreasing for x ≥ 3 (since log x grows slowly).

We evaluate the improper integral:∫ ∞

2

1

x log x
dx.

Make the substitution u = log x, so du = 1
xdx. Then:∫ ∞

2

1

x log x
dx = lim

t→∞

∫ t

log 2

1

u
du = lim

t→∞
[log u]tlog 2 = ∞.

Since the integral diverges, the integral test implies that the series also
diverges:

∞∑
n=2

1

n log n
diverges.
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At x = −1:
∞∑
n=2

(−1)n

n log n

This is an alternating series. It converges conditionally by the Alternating
Series Test since:

�
1

n log n is positive and decreasing for n ≥ 3,

� limn→∞
1

n log n = 0.

Conclusion:
∞∑
n=2

xn

n log n
converges for x ∈ [−1, 1).

Radius of convergence: R = 1
Interval of convergence: [−1, 1)

Properties of Power Series

Let

f(x) =
∞∑
n=0

an(x− x0)
n

be a real power series with radius of convergence R > 0. Then the function f
has the following important properties on the open interval (x0−R, x0+R):

� Smoothness: The function f is infinitely differentiable on (x0 −
R, x0 + R), i.e., all derivatives of f exist and are continuous on this
interval. This follows from term-by-term differentiation being valid
within the radius of convergence.

� Term-by-term differentiation: The derivative of f is obtained by
differentiating term-by-term:

f ′(x) =
∞∑
n=1

nan(x− x0)
n−1,

and this series has the same radius of convergence R. The term n = 0
vanishes in the derivative.
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� Term-by-term integration: The indefinite integral of f is given by
integrating term-by-term:∫

f(x) dx = C +
∞∑
n=0

an
n+ 1

(x− x0)
n+1,

where C is the constant of integration. This series also has radius of
convergence R.

� Preservation of convergence: Both differentiation and integration
preserve the radius of convergence R. That is, the derived and
integrated series converge on the same interval (x0 −R, x0 +R) as the
original series.

� Analyticity: Within the interval of convergence, the function f is
analytic. That is, not only is f smooth, but it equals its Taylor series
expansion centered at x0:

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n.

Analytic Functions

A real function f is called analytic at x0 if there exists a power series∑
an(x− x0)

n that converges to f(x) for all x in some neighborhood of x0.
In that case, f has a Taylor expansion:

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)

n.

Important Notes

� A function can be infinitely differentiable but not analytic (e.g., f(x) =
e−1/x2

, with f(0) = 0, has all derivatives zero at 0, but is not identically
zero).

� Power series converge uniformly on compact subintervals of the open
interval of convergence.

� Within the interval of convergence, power series can be manipulated
like polynomials (term-by-term addition, multiplication, etc.).
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Representation of Functions by Power Series

Many functions can be expressed as power series within a suitable interval. A
function f is said to be represented by a power series centered at x0 ∈ R
if there exists a sequence (an) such that:

f(x) =
∞∑
n=0

an(x− x0)
n for all x in some interval (x0 −R, x0 +R),

where R > 0 is the radius of convergence.
Maclaurin formula (Taylor at 0).

f(x) =
∞∑
n=0

f (n)(0)

n!
xn for |x| < R,

Let f(x) = 1
1−x = (1− x)−1. Compute the first few derivatives explicitly:

f(x) = (1− x)−1,

f ′(x) = (+1) · (1− x)−2,

f ′′(x) = (+1) · 2! (1− x)−3,

f (3)(x) = (+1) · 3! (1− x)−4,
...

This suggests

f (n)(x) = n! (1− x)−(n+1) for all n ≥ 0.

Evaluating at x = 0 gives

f (n)(0) = n! (1− 0)−(n+1) = n!.

Therefore, the Maclaurin series of f is

1

1− x
=

∞∑
n=0

f (n)(0)

n!
xn =

∞∑
n=0

xn.

The radius of convergence is

R = 1,
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so the series converges for |x| < 1. (Endpoint behavior: at x = 1, terms are
all 1 and the series diverges; at x = −1, terms alternate ±1 and also diverge.)

One often rewrites a function as
1

1− g(x)
and substitutes

1

1− g(x)
=

∞∑
n=0

(
g(x)

)n
(|g(x)| < 1).

�

1

2 + 3x
. Write

1

2 + 3x
=

1

2

1

1 + 3
2x

=
1

2

1

1− (−3
2x)

, so

g(x) = −3

2
x, |g(x)| < 1 ⇔ |x| < 2

3 .

Then
1

2 + 3x
=

∞∑
n=0

(−1)n3n

2n+1
xn.

�

1

1 + x2
. View as

1

1− (−x2)
, hence

g(x) = −x2, |g(x)| < 1 ⇔ |x| < 1,

and
1

1 + x2
=

∞∑
n=0

(−1)nx2n.

Differentiation rule for power series. If a power series

f(x) =
∞∑
n=0

anx
n

has radius of convergence R > 0, then for every |x| < R it is differentiable
term-by-term and

f ′(x) =
∞∑
n=1

n an x
n−1,

with the same radius R.
Apply to the geometric series.
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For |x| < 1,

1

1− x
=

∞∑
n=0

xn.

Differentiate both sides term-by-term on |x| < 1:

d

dx

(
1

1− x

)
=

∞∑
n=0

d

dx

(
xn
)

=⇒ 1

(1− x)2
=

∞∑
n=1

nxn−1.

(We also know directly that
d

dx

1

1− x
=

1

(1− x)2
by calculus.)

Reindex to standard powers of x. The series
∞∑
n=1

nxn−1 is correct,

but it is often nicer to write powers as xn. Let m = n− 1 (so n = m+ 1 and
m ≥ 0):

∞∑
n=1

nxn−1 =
∞∑

m=0

(m+ 1)xm =
∞∑
n=0

(n+ 1)xn.

Therefore, for |x| < 1,

1

(1− x)2
=

∞∑
n=0

(n+ 1)xn .

Differentiate the previous identity once more (still valid for |x| < 1):

d

dx

(
1

(1− x)2

)
=

d

dx

( ∞∑
n=1

nxn−1

)
=⇒ 2

(1− x)3
=

∞∑
n=1

n(n− 1)xn−2.

Divide by 2:
1

(1− x)3
=

1

2

∞∑
n=2

n(n− 1)xn−2.

Reindex to express in powers xm: let m = n− 2 (so n = m+ 2, m ≥ 0):

1

(1− x)3
=

1

2

∞∑
m=0

(m+ 2)(m+ 1)xm

Integration rule for power series .
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If a power series

f(x) =
∞∑
n=0

anx
n

has radius of convergence R > 0, then for every |x| < R it is integrable
term-by-term ∫ x

0

f(t) dt =
∞∑
n=0

∫ x

0

ant
n dt =

∞∑
n=0

an
xn+1

n+ 1
.

The resulting power series has the same radius R.
ln(1 + x) via integration.
Start from the geometric series with g(x) = −x:

1

1− (−x)
=

∞∑
n=0

(−x)n =
∞∑
n=0

(−1)nxn, |x| < 1.

Integrate term-by-term from 0 to x (valid for |x| < 1):∫ x

0

1

1 + t
dt =

∫ x

0

∞∑
n=0

(−1)ntn dt =
∞∑
n=0

(−1)n
xn+1

n+ 1
.

The left-hand side:∫ x

0

1

1 + t
dt = ln(1 + x)− ln(1 + 0) = ln(1 + x).

Reindex (m = n+ 1) to the standard form:

ln(1 + x) =
∞∑
n=1

(−1)n+1x
n

n
, |x| < 1.

Endpoints: At x = 1 the series becomes the harmonic series (diverges). At
x = −1 it is the alternating harmonic series (converges conditionally to

ln 2 =
∞∑
n=1

(−1)n+1 1

n

.
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Now start from the geometric series with g(t) = −t2:

1

1− (−t2)
=

∞∑
n=0

(−t2)n =
∞∑
n=0

(−1)nt2n, |t| < 1.

Integrate term-by-term from 0 to x (valid for |x| < 1):∫ x

0

1

1 + t2
dt =

∫ x

0

∞∑
n=0

(−1)nt2n dt =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
.

Recognize the left-hand side:∫ x

0

1

1 + t2
dt = arctanx− arctan 0 = arctanx.

Therefore

arctanx =
∞∑
n=0

(−1)n
x2n+1

2n+ 1
, |x| < 1.

Endpoints: At x = ±1 the series becomes the Leibniz series; it converges
conditionally to ±π/4

Exponential function ex

.
Recall Maclaurin (Taylor at 0):

f(x) =
∞∑
n=0

f (n)(0)

n!
xn (for |x| within the radius).

For f(x) = ex, we have f (n)(x) = ex for all n, hence f (n)(0) = 1. Therefore

ex =
∞∑
n=0

xn

n!
.

Similarly,

e−x =
∞∑
n=0

(−x)n

n!
=

∞∑
n=0

(−1)n xn

n!
(R = ∞).
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Functions sinhx and coshx.
Recall that, if f(x) =

∑
anx

n, g(x) =
∑

bnx
n, then

(f(x) + g(x) =
∑

(an + bn)x
n.

We know that

sinhx :=
ex − e−x

2
, coshx :=

ex + e−x

2
.

Substitute the poewer series of e±x and combine term-by-term termwise ad-
dition/subtraction is justified and preserves R = ∞:

sinhx =
1

2

( ∞∑
n=0

xn

n!
−

∞∑
n=0

(−1)nxn

n!

)
=

∞∑
n=0

1− (−1)n

2

xn

n!
.

Note that 1 − (−1)n is 0 for even n and 2 for odd n, so only odd powers
remain:

sinhx =
∞∑
k=0

x2k+1

(2k + 1)!
(R = ∞).

Similarly,

coshx =
1

2

( ∞∑
n=0

xn

n!
+

∞∑
n=0

(−1)nxn

n!

)
=

∞∑
n=0

1 + (−1)n

2

xn

n!
,

where 1+ (−1)n is 2 for even n and 0 for odd n, so only even powers remain:

coshx =
∞∑
k=0

x2k

(2k)!
(R = ∞).

Examples

� Exponential function:

ex =
∞∑
n=0

xn

n!
, for all x ∈ R.
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� Geometric series:

1

1− x
=

∞∑
n=0

xn, for |x| < 1.

� Sine and cosine:

sinx =
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
, cosx =

∞∑
n=0

(−1)nx2n

(2n)!
, for all x ∈ R.

� Natural logarithm:

ln(1 + x) =
∞∑
n=1

(−1)n+1xn

n
, for |x| < 1.

� Arctan:

arctanx =
∞∑
n=0

(−1)nx2n+1

2n+ 1
, for |x| ≤ 1.

Exercises

1. Show that

lim
x→0

ln(1 + x)− x+ x2

2

x3
=

1

3
.

Solution. Use the power series representation

ln(1 + x) =
∞∑
n=1

(−1)n+1

n
xn = x− x2

2
+

x3

3
− x4

4
+ · · ·

Then

ln(1+x)−x+ x2

2 =

(
x− x2

2
+

x3

3
− x4

4
+ · · ·

)
−x+

x2

2
=

x3

3
−x4

4
+· · · .

Divide by x3:
ln(1 + x)− x+ x2

2

x3
=

1

3
− x

4
+ · · · → 1

3 .
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2. Show that

lim
x→0

1− cosx− x2

2

x4
=

1

24
.

Solution. Use

cosx =
∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2
+

x4

24
− x6

720
+ · · · .

Then

1− cosx− x2

2
=

(
1− x2

2
+

x4

24
− · · ·

)
− 1− x2

2
=

x4

24
− x6

720
+ · · · .

Divide by x4 and let x → 0: → 1
24 .

3. Evaluate ∞∑
n=0

(n+ 1)

(
1

2

)n
.

Solution. Recall
1

(1− x)2
=

∞∑
n=0

(n+ 1)xn for |x| < 1. Set x = 1
2 :

∞∑
n=0

(n+ 1)

(
1

2

)n
=

1(
1− 1

2

)2 =
1

(12)
2
= 4 .

4. Show that ∞∑
n=1

n2xn =
x(1 + x)

(1− x)3
, |x| < 1,

and then compute
∞∑
n=1

n2

3n
.

Solution. Start from S(x) =
∑∞

n=0 x
n = 1

1−x (|x| < 1). Differentiate:

S ′(x) =
∑∞

n=1 nx
n−1 = 1

(1−x)2 . Multiply by x:
∑∞

n=1 nx
n = x

(1−x)2 .

Differentiate this identity:

∞∑
n=1

n2xn−1 =
d

dx

(
x

(1− x)2

)
=

(1− x)2 − x · 2(1− x)(−1)

(1− x)4
=

1 + x

(1− x)3
.
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Multiply by x:
∞∑
n=1

n2xn =
x(1 + x)

(1− x)3
, as claimed. Now plug x = 1

3 :

∞∑
n=1

n2

3n
=

1
3(1 +

1
3)

(1− 1
3)

3
=

1
3 ·

4
3(

2
3

)3 =
4
9
8
27

=
4

9
· 27
8

=
3

2
.



Fourier Series

Fourier series allow us to represent periodic functions as infinite sums of sines
and cosines.

1. Periodic Functions

A function f(t) is said to be periodic with period L > 0 if

f(t+ L) = f(t) for all t ∈ R.

Example. Let f(t) = sin(t). Then f is periodic with period L = 2π,
because:

f(t+ 2π) = sin(t+ 2π) = sin(t) = f(t).

Note that f(t) = sin(t) also satisfies

f(t+ 4π) = sin(t+ 4π) = sin(t), f(t+ 6π) = sin(t+ 6π) = sin(t), etc.

In fact, sin(t) has period 2nπ for any positive integer n = 1, 2, 3, . . ..
However, the smallest positive period is 2π, which is called the period.

Graphical Interpretation. A function with period L has a graph that
repeats itself every L units. That is, the graph remains unchanged when
shifted left or right by L.

53



54

1. Sine Function sinx

−2π −π π 2π

−1

1

x

f(x)

Cosine Function: cosx

−2π −π π 2π

−1

1

x

f(x)

Example: Periodic Extension of x2

We define the function:

f(x) = x2, x ∈ (−1, 1),

and extend it to all real numbers by periodicity with period 2:

f(x+ 2) = f(x), for all x ∈ R.

To repeat the shape of x2 from (−1, 1) across the real line, we shift the
basic graph by multiples of 2. This means we “copy and paste” the curve x2

into every interval of length 2.
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−10 −8 −6 −4 −2 2 4 6 8 10

1

x

f(x)

Example: Periodic Extension of x

We define the function:

f(x) = x, x ∈ (−1, 1),

and extend it to all real numbers by periodicity with period 2:

f(x+ 2) = f(x), for all x ∈ R.

−10 −8 −6 −4 −2 2 4 6 8 10

−1

1

x

f(x)

2. Piecewise Continuous Functions and Jump
Discontinuities

A function f is called piecewise continuous on an interval [a, b] if:

� It is continuous on parts of the interval, except at a finite number of
points of discontinuity,

� At each point of discontinuity, the left-hand and right-hand limits exist
and are finite.

When the two one-sided limits exist but are not equal, the function has
a jump discontinuity.



56

Example: Jump Discontinuity

x

f(x)

c

left limit

right limit

f(c)Jump

The function has a jump at x = c. Both one-sided limits exist but are not equal.

Orthogonality of Trigonometric Functions

The sine and cosine functions are orthogonal on [−π, π]:∫ π

−π

cos(mx) cos(nx) dx =

{
π if m = n ̸= 0,

0 if m ̸= n,∫ π

−π

sin(mx) sin(nx) dx =

{
π if m = n,

0 if m ̸= n,∫ π

−π

cos(mx) sin(nx) dx = 0 for all m,n.

These orthogonality relations are the foundation of Fourier coefficients.

3. Fourier Series of a Function

The Fourier series of a function f(x) with period 2L is given by:

f(x) ∼ a0
2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
where the Fourier coefficients are:

a0 =
1

L

∫ L

−L

f(x) dx
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an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx, bn =

1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx

provided that these integrals exist.
The symbol ∼ means that the Fourier series represents an approximation of
the function f(x).

In general, the Fourier series of a function f is not exactly equal to f .
However, under suitable conditions on f , the series converges to f(x) in
various senses — such as:

� Pointwise convergence at each point (if f is piecewise smooth),

� Uniform convergence on an interval (if f is continuous and periodic),

� Convergence in norm, such as in the L2-sense (i.e., mean-square
convergence).

4. Dirichlet’s Theorem (Pointwise Convergence)

Let f(x) be a function of period 2L. Suppose that:

� f is piecewise continuous on [−L,L],

� f ′ is piecewise continuous on [−L,L].

Then the Fourier series of f converges at every point x ∈ R to the average
of the left- and right-hand limits:

f(x−) + f(x+)

2
=

a0
2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
where the right-hand and left-hand limits as:

f(x+) = lim
ξ→x+

f(ξ), f(x−) = lim
ξ→x−

f(ξ)

Furthermore, if f is continuous at x, then the Fourier series converges to
f(x):

f(x) =
a0
2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
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Summary

Let SN(x) denote the N -th partial sum of the Fourier series of a function f
with period 2L:

SN(x) =
a0
2
+

N∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
This expression is known as a trigonometric polynomial of degree N .

� If f is continuous at a point x, then:

lim
N→∞

SN(x) = f(x)

� If f has a jump discontinuity at x, then:

lim
N→∞

SN(x) =
1

2

(
f(x−) + f(x+)

)
That is, the Fourier series converges to the midpoint of the jump.

Example: Fourier Series of a Square Wave

Let f(t) be the square wave of period 2π, defined over one period by:

f(t) = sign(t) =

{
−1, −π < t < 0

1, 0 < t < π

−2π −π π 2π

−1

1

t

f(t)

We now compute the Fourier series of f(t). Since f is piecewise smooth
on [−π, π], the Fourier series converges (by Dirichlet’s Theorem) to:
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f(t) ∼ a0
2
+

∞∑
n=1

(an cos(nt) + bn sin(nt))

The Fourier coefficients are given by:

a0 =
1

π

∫ π

−π

f(t) dt, an =
1

π

∫ π

−π

f(t) cos(nt) dt, bn =
1

π

∫ π

−π

f(t) sin(nt) dt

Step 1: Compute a0

a0 =
1

π

(∫ 0

−π

(−1) dt+

∫ π

0

1 dt

)
=

1

π
(−π + π) = 0

Step 2: Compute an

an =
1

π

(∫ 0

−π

(−1) cos(nt) dt+

∫ π

0

cos(nt) dt

)
Since cosine is even:

an =
1

π

(
−
∫ π

0

cos(nt) dt+

∫ π

0

cos(nt) dt

)
= 0

Step 3: Compute bn

bn =
1

π

(∫ 0

−π

(−1) sin(nt) dt+

∫ π

0

sin(nt) dt

)
Since sine is odd:

bn =
1

π

(
−
∫ π

0

sin(nt) dt+

∫ π

0

sin(nt) dt

)
=

2

π

∫ π

0

sin(nt) dt

Now compute: ∫ π

0

sin(nt) dt =

{
0, if n is even
2
n , if n is odd

Thus:

bn =

{
0, if n is even
4
nπ , if n is odd
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The Fourier series of f(t) is:

f(t) ∼
∞∑

n=1n odd

4

nπ
sin(nt)

∼
∞∑
n=0

4

(2n+ 1)π
sin((2n+ 1)t)

Only the sine terms with odd indices appear in the expansion.

5. Symmetry : Even and Odd Functions

A function f is called odd if:

f(−x) = −f(x) for all x ∈ R.

Examples: sgn(x), x, x3, sin(x).

−2 2

−2

2

x

f(x)

Odd Function: f(x) = x3

The graph is symmetric with respect to the origin.

A function f is called even if:

f(−x) = f(x) for all x ∈ R.

Examples: |x|, x2, cos(x).
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−2 2

5

10

x

f(x)

Even Function: f(x) = x2

The graph is symmetric with respect to the y-axis.

Even–Odd Decomposition of a Function

Every function f(x) defined on a symmetric interval [−L,L] can be uniquely
written as:

f(x) = feven(x) + fodd(x)

With:

feven(x) =
f(x) + f(−x)

2
, fodd(x) =

f(x)− f(−x)

2

These satisfy:

� feven is even,

� fodd is odd,

� Their sum gives f(x) exactly.

Example: Decompose f (x) = ex

Let f(x) = ex. Then:

feven(x) =
ex + e−x

2
= cosh(x) (even part)

fodd(x) =
ex − e−x

2
= sinh(x) (odd part)

So:
ex = cosh(x) + sinh(x)
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Even and Odd Decomposition in Fourier Series

According to Dirichlet’s Theorem, any function f(x) (under suitable condi-
tions) can be written as the sum of an even and an odd function. This is
reflected in the structure of the Fourier series:

f(x) ∼ a0
2
+

∞∑
n=1

an cos
(nπx

L

)
︸ ︷︷ ︸

even part

+
∞∑
n=1

bn sin
(nπx

L

)
︸ ︷︷ ︸

odd part

� The even part consists of cosine terms and the constant term. Since
cosine is even, this part is symmetric about the y-axis.

� The odd part consists of sine terms. Since sine is odd, this part is
symmetric about the origin.

Consequence: Uniqueness of Even–Odd Decomposition

Since the Fourier series naturally separates into an even part (cosine terms)
and an odd part (sine terms), we can make the following conclusions:

� If f is even, then its odd part must be identically zero. This happens
if and only if all sine coefficients vanish:

bn = 0 for all n ≥ 1.

Thus, the Fourier series contains only cosine terms (and possibly a0).

� If f is odd, then its even part must be zero. This occurs only when all
cosine coefficients vanish, including the constant term:

a0 = 0, an = 0 for all n ≥ 1.

Therefore, the Fourier series contains only sine terms.

Summary:

� If f is even, then all sine coefficients vanish: bn = 0 for all n ≥ 1.

� If f is odd, then all cosine coefficients vanish (including the constant
term): a0 = 0, an = 0 for all n ≥ 1.
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Fourier series on [−L,L] with period 2L
General form

f(x) ∼ a0
2
+

∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
,

a0 =
1

L

∫ L

−L

f(x) dx, an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx, bn =

1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx.

Even functions: f(−x) = f(x) (cosine series)

f(x) ∼ a0
2
+

∞∑
n=1

an cos
(nπx

L

)
,

a0 =
2

L

∫ L

0

f(x) dx, an =
2

L

∫ L

0

f(x) cos
(nπx

L

)
dx, n ≥ 1,

bn = 0 for all n ≥ 1.

Odd functions: f(−x) = −f(x) (sine series)

f(x) ∼
∞∑
n=1

bn sin
(nπx

L

)
,

a0 = 0, an = 0 for all n ≥ 1, bn =
2

L

∫ L

0

f(x) sin
(nπx

L

)
dx, n ≥ 1.

Examples

1 (odd)

f(x) =

{
1, 0 < x < π,

−1, −π < x < 0,
(f odd).

Hence a0 = an = 0 and

bn =
2

π

∫ π

0

1 ·sin(nx) dx =
2

π

[
− cos(nx)

n

]π
0
=

2

π
· 1− cos(nπ)

n
=

2

π
· 1− (−1)n

n
.
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Thus bn = 0 for n even, and bn =
4

πn
for n odd. Therefore

f(x) ∼ 4

π

∞∑
n=1
n odd

sin(nx)

n

(Gibbs phenomenon appears at the jump points x = 0,±π; convergence is to
the midpoint value there).

2) (odd)

f(x) = x on [−π, π] (f odd).

Again a0 = an = 0 and

bn =
2

π

∫ π

0

x sin(nx) dx.

Integrate by parts with u = x, dv = sin(nx) dx so du = dx, v = −cos(nx)

n
:∫ π

0

x sin(nx) dx =
[
−x cos(nx)

n

]π
0
+
1

n

∫ π

0

cos(nx) dx = −π cos(nπ)

n
+
1

n

[sin(nx)
n

]π
0
= −π(−1)n

n
.

Hence

bn =
2

π

(
− π(−1)n

n

)
= −2(−1)n

n
,

and the Fourier series is

f(x) ∼ −2
∞∑
n=1

(−1)n

n
sin(nx)

3) Absolute Value (even)

f(x) = |x| on [−π, π] (f even).

Thus bn = 0. Compute

a0 =
2

π

∫ π

0

x dx =
2

π
· π

2

2
= π ⇒ a0

2
=

π

2
.
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For n ≥ 1,

an =
2

π

∫ π

0

x cos(nx) dx.

Integrate by parts with u = x, dv = cos(nx) dx so du = dx, v =
sin(nx)

n
:

∫ π

0

x cos(nx) dx =
[x sin(nx)

n

]π
0
−1

n

∫ π

0

sin(nx) dx =
π sin(nπ)

n
−1

n

[
−cos(nx)

n

]π
0
.

Since sin(nπ) = 0,∫ π

0

x cos(nx) dx = −1

n
· − cos(nπ) + cos(0)

n
= − 1

n2

(
1− (−1)n

)
.

Therefore

an =
2

π
·
(
− 1

n2

(
1− (−1)n

))
.

Hence an = 0 for n even, and for n odd an = − 4

πn2
. The series is

|x| ∼ π

2
− 4

π

∞∑
n=1
n odd

cos(nx)

n2
.

At x = 0, we have cos(0) = 1, so

|x| ∼ π

2
− 4

π

∞∑
n=1
n odd

cos(nx)

n2
=⇒ 0 =

π

2
− 4

π

∞∑
n=1
n odd

1

n2
.

Hence
∞∑
n=1
n odd

1

n2
=

π2

8
.

∞∑
k=0

1

(2k + 1)2
=

π2

8
.
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4. (even)

f(x) = x2 on [−π, π] (f even).

Thus bn = 0. First,

a0 =
2

π

∫ π

0

x2 dx =
2

π
· π

3

3
=

2π2

3
⇒ a0

2
=

π2

3
.

For n ≥ 1,

an =
2

π

∫ π

0

x2 cos(nx) dx.

Let I =
∫ π

0 x2 cos(nx) dx. Integrate by parts twice.

(1) First parts: u = x2, dv = cos(nx) dx so du = 2x dx, v =
sin(nx)

n
:

I =
[x2 sin(nx)

n

]π
0
− 2

n

∫ π

0

x sin(nx) dx = 0− 2

n
J,

since sin(nπ) = 0, where J =
∫ π

0 x sin(nx) dx.

(2) Second parts for J : u = x, dv = sin(nx) dx so du = dx, v = −cos(nx)

n
:

J =
[
−x cos(nx)

n

]π
0
+
1

n

∫ π

0

cos(nx) dx = −π cos(nπ)

n
+
1

n

[sin(nx)
n

]π
0
= −π(−1)n

n
.

Thus

I = −2

n

(
− π(−1)n

n

)
=

2π(−1)n

n2
, an =

2

π
I =

2

π
· 2π(−1)n

n2
=

4(−1)n

n2
.

Therefore

x2 ∼ π2

3
+

∞∑
n=1

4(−1)n

n2
cos(nx) .

At x = 0, we have cos(0) = 1, so the series becomes

x2 ∼ π2

3
+

∞∑
n=1

4(−1)n

n2
cos(nx) =⇒ 0 =

π2

3
+

∞∑
n=1

4(−1)n

n2
.

Dividing both sides by 4, we obtain
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∞∑
n=1

(−1)n

n2
= −π2

12
.

Exercise Find the Fourier series on [−π, π] (with 2π-periodic extension) of

f(x) =
π

2
− |x|.

Then evaluate your series at x = 0 to deduce the value of
∞∑
n=1

1

(2n− 1)2
.

Solution Since f is even, its Fourier series is a cosine series

f(x) ∼ a0
2
+

∞∑
n=1

an cos(nx), a0 =
1

π

∫ π

−π

f(x) dx, an =
1

π

∫ π

−π

f(x) cos(nx) dx.

Compute a0. Using evenness,

a0 =
2

π

∫ π

0

(π
2
− x
)
dx =

2

π

[πx
2

− x2

2

]π
0
= 0.

Compute an. Again by evenness,

an =
2

π

∫ π

0

(π
2
− x
)
cos(nx) dx =

2

π

[π
2

∫ π

0

cos(nx) dx−
∫ π

0

x cos(nx) dx
]
.

The first integral is 0 since
∫ π

0 cos(nx) dx = sin(nπ)
n = 0. For the second,

integration by parts gives∫ π

0

x cos(nx) dx =
π sin(nπ)

n
+

cos(nπ)− 1

n2
=

(−1)n − 1

n2
.

Hence

an = −2

π
· (−1)n − 1

n2
=

2

π
· 1− (−1)n

n2
=


4

πn2
, n odd,

0, n even.

Therefore

π

2
− |x| ∼ 4

π

∞∑
n=1
n odd

cos(nx)

n2
(−π < x < π).
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At x = 0. Since f(0) = π
2 and cos(0) = 1,

π

2
=

4

π

∞∑
n=1
n odd

1

n2
=⇒

∞∑
k=1

1

(2k − 1)2
=

π2

8
.



Fourier Integrals

Motivation

While Fourier series represent periodic functions as sums of sines and cosines,
many functions in practice are defined on the entire real line and are not pe-
riodic. In such cases, we use the Fourier integral to represent non-periodic
functions using integrals rather than infinite sums.

Fourier Integral Representation

Let f(x) be a real-valued function defined on (−∞,∞). Suppose that f
satisfies the following conditions:

(i) f and f ′ are piecewise continuous on every bounded interval of R,

(ii) f is absolutely integrable on R, i.e.,∫ ∞

−∞
|f(x)| dx converges (as an improper integral).

Then the Fourier integral representation of f is given by:

f(x) =
1

π

∫ ∞

0

[A(λ) cos(λx) +B(λ) sin(λx)] dλ, (1)

where the Fourier cosine and sine transforms are defined as:

A(λ) =

∫ ∞

−∞
f(t) cos(λt) dt, B(λ) =

∫ ∞

−∞
f(t) sin(λt) dt.

The identity (1) holds at every point x ∈ R where f is continuous. If x is
a point of discontinuity, the Fourier integral converges to the average of the
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left- and right-hand limits:

1

2

(
f(x−) + f(x+)

)
=

1

π

∫ ∞

0

[A(λ) cos(λx) +B(λ) sin(λx)] dλ.

Symmetry

� If f is even, i.e. f(−x) = f(x), then the sine terms vanish (B(λ) = 0)
and we obtain the Fourier cosine integral:

f(x) =
1

π

∫ ∞

0

A(λ) cos(λx) dλ,

where

A(λ) = 2

∫ ∞

0

f(t) cos(λt).

� If f is odd, i.e. f(−x) = −f(x), then the cosine terms vanish (A(λ) =
0) and we obtain the Fourier sine integral:

f(x) =
1

π

∫ ∞

0

B(λ) sin(λx) dλ,

where

B(λ) = 2

∫ ∞

0

f(t) sin(λt).

Example 1.

Define:

f(x) =

{
1, |x| ≤ 1,

0, |x| > 1.

−2 −1 1 2

1

x

f(x)

Plot of f(x) = 1 for |x| ≤ 1 and f(x) = 0 otherwise.
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Since f is even, we have B(λ) = 0, and the Fourier cosine transform is:

A(λ) = 2

∫ ∞

0

f(x) cos(λx) dx = 2

∫ 1

0

cos(λx) dx =
2 sin(λ)

λ
.

Hence, the Fourier integral representation of f(x) is:

f(x) =
1

π

∫ ∞

0

A(λ) cos(λx) dλ =
2

π

∫ ∞

0

sin(λ)

λ
cos(λx) dλ.

At x = 0:

f(0) = 1 =
2

π

∫ ∞

0

sinλ

λ
dλ.

Then ∫ ∞

0

sinλ

λ
dλ =

π

2
.

Example 2.

Define:

f(x) =


−1, −1 ≤ x ≤ 0,

1, 0 ≤ x ≤ 1,

0, |x| > 1.

−2 −1 1 2
−1

1

x

f(x)

Since f is odd, we have A(λ) = 0, and the Fourier sine transform is:

B(λ) = 2

∫ ∞

0

f(x) sin(λx) dx.

Substituting f(x) gives:

B(λ) = 2

∫ 1

0

sin(λx) dx =
2(1− cos(λ))

λ
.

Hence, the Fourier integral representation of f(x) reduces to:

f(x) =
1

π

∫ ∞

0

B(λ) sin(λx) dλ =
2

π

∫ ∞

0

1− cos(λ)

λ
sin(λx) dλ.
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Example 3.

Let

f(x) =

{
1− |x|, |x| ≤ 1,

0, |x| > 1.

−2 −1 1 2

0.5

1

x

f(x)

Since f is even, in the Fourier–integral representation

f(x) =
1

π

∫ ∞

0

[
A(λ) cos(λx) +B(λ) sin(λx)

]
dλ,

we have B(λ) ≡ 0 and only A(λ) is needed:

A(λ) =

∫ ∞

−∞
f(t) cos(λt) dt = 2

∫ 1

0

(1− t) cos(λt) dt.

Compute:

A(λ) = 2

[∫ 1

0

cos(λt) dt−
∫ 1

0

t cos(λt) dt

]
.

Now, ∫ 1

0

cos(λt) dt =
sinλ

λ
,

∫ 1

0

t cos(λt) dt =
sinλ

λ
+

cosλ− 1

λ2
.

Hence,

A(λ) = 2

[
sinλ

λ
− sinλ

λ
− cosλ− 1

λ2

]
=

2[1− cosλ]

λ2
.

Since B(λ) = 0,

f(x) =
1

π

∫ ∞

0

2[1− cosλ]

λ2
cos(λx) dλ.
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At x = 0, we have f(0) = 1, so

1 = f(0) =
2

π

∫ ∞

0

1− cosλ

λ2
dλ.

Thus, ∫ ∞

0

1− cosλ

λ2
dλ =

π

2
.

Example 4.

f(x) =


1, −1 ≤ x < 0,

0, 0 ≤ x ≤ 1,

0, |x| > 1.

−1 1

0.5

1

x

f(x)

Recall that, if f(x) and f ′(x) are piecewise continuous on every finite interval
and f(x) is absolutely integrable on (−∞,∞), then

f(x) =
1

π

∫ ∞

0

[
A(λ) cos(λx) +B(λ) sin(λx)

]
dλ,

where

A(λ) =

∫ ∞

−∞
f(t) cos(λt) dt, B(λ) =

∫ ∞

−∞
f(t) sin(λt) dt.

At a point of discontinuity x0,

1

2

[
f(x−0 ) + f(x+0 )

]
=

1

π

∫ ∞

0

[
A(λ) cos(λx0) +B(λ) sin(λx0)

]
dλ.

Here f(x) is supported on [−1, 1], so

A(λ) =

∫ 0

−1

cos(λt) dt =
sin(λ)

λ
, B(λ) =

∫ 0

−1

sin(λt) dt =
1− cos(λ)

λ
.
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Hence

f(x) =
1

π

∫ ∞

0

[
sin(λ)

λ
cos(λx) +

1− cos(λ)

λ
sin(λx)

]
dλ.

At x = 0, sin(λx) = 0 and cos(λx) = 1, giving

f(0) =
1

π

∫ ∞

0

sin(λ)

λ
dλ =

1

π
· π
2
=

1

2
.

By the Fourier Integral Theorem,

1

2
[f(0−) + f(0+)] =

1

2
(1 + 0) =

1

2
,

which agrees with the computed value.

f(0) =
1

2
.

Exercise. Show that∫ ∞

0

sin(πλ)

1− λ2
sin(λx) dλ =


π

2
sinx, 0 ≤ x ≤ π,

0, x > π,

(and the value is 0 also for x < 0). Hint: Use the Fourier sine transform.

Solution. Consider the function

f(x) =

{
sinx, 0 ≤ x ≤ π,

0, x > π,
(and f(x) = 0 for x < 0).

Its (one-sided) Fourier sine transform is

B(λ) =

∫ ∞

0

f(t) sin(λt) dt =

∫ π

0

sin t sin(λt) dt.

Using the product-to-sum identity

sin t sin(λt) = 1
2

(
cos
(
(λ− 1)t

)
− cos

(
(λ+ 1)t

))
,
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we get

B(λ) =
1

2

[∫ π

0

cos
(
(λ− 1)t

)
dt−

∫ π

0

cos
(
(λ+ 1)t

)
dt

]
=

1

2

[
sin
(
(λ− 1)π

)
λ− 1

−
sin
(
(λ+ 1)π

)
λ+ 1

]
.

Since sin
(
(λ±1)π

)
= sin(πλ) cosπ±cos(πλ) sinπ = − sin(πλ), this simplifies

to

B(λ) =
1

2

[
−sin(πλ)

λ− 1
+

sin(πλ)

λ+ 1

]
= sin(πλ) · −1

λ2 − 1
=

sin(πλ)

1− λ2
.

For suitable piecewise smooth, absolutely integrable f , the sine-transform
inversion reads

f(x) =
2

π

∫ ∞

0

B(λ) sin(λx) dλ for x > 0,

with the usual midpoint value at discontinuities. Since f is continuous on
[0, π] and vanishes for x > π, we obtain

∫ ∞

0

sin(πλ)

1− λ2
sin(λx) dλ =

π

2
f(x) =


π

2
sinx, 0 ≤ x ≤ π,

0, x > π,

and the integral is 0 also for x < 0 (since f(x) = 0 there).
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First Order Differential
Equations

Introduction

In this chapter, we study methods for solving first-order differential equa-
tions. The most general form is:

dy

dt
= f(y, t)

There is no general formula for solving this equation. Instead, we explore
several special cases.

Topics Covered

� Linear equations

� Bernoulli equations

� Separable equations

� Homogenizes equations

� Exact equations

� Non-exact and integrating factors.

Linear First-Order Differential Equations

A linear first-order differential equation has the form:

dy

dt
+ p(t)y = g(t)
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where p(t) and g(t) are continuous.

Solution Method

1. Compute the integrating factor:

µ(t) = e
∫
p(t) dt

2. Multiply the entire equation by µ(t):

µ(t)
dy

dt
+ µ(t)p(t)y = µ(t)g(t)

3. Recognize the left side as the derivative of a product:

d

dt
[µ(t)y(t)] = µ(t)g(t)

4. Integrate both sides:

µ(t)y(t) =

∫
µ(t)g(t) dt+ C

5. Solve for y(t):

y(t) =
1

µ(t)

(∫
µ(t)g(t) dt+ C

)

Summary

The general solution is:

y(t) =
1

e
∫
p(t) dt

(∫
e
∫
p(t) dtg(t) dt+ C

)
However, it’s often easier to use the process above rather than memorizing
the formula.
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Example 1.

Solve the IVP:

ty′ + 2y = t2 − t+ 1, y(1) =
1

2

Step 1: Standard form.

Divide by t (assume t > 0):

y′ +
2

t
y = t− 1 +

1

t

Step 2: Integrating factor.

µ(t) = e
∫

2
t dt = e2 ln |t| = t2

Step 3: Multiply through by µ(t) = t2:

t2y′ + 2ty = t3 − t2 + t ⇒ d

dt
(t2y) = t3 − t2 + t

Step 4: Integrate both sides.

t2y =

∫
(t3 − t2 + t) dt =

1

4
t4 − 1

3
t3 +

1

2
t2 + C

Step 5: Solve for y(t).

y(t) =
1

4
t2 − 1

3
t+

1

2
+

C

t2

Step 6: Apply initial condition.

y(1) =
1

4
− 1

3
+

1

2
+ C =

1

2
⇒ C =

1

12

Final Solution:

y(t) =
1

4
t2 − 1

3
t+

1

2
+

1

12t2
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Example 2

Solve the initial value problem:

cos(x)y′ + sin(x)y = 2 cos3(x) sin(x)− 1, y
(π
4

)
= 3

√
2, 0 ≤ x <

π

2

Dividing both sides by cos(x), we obtain:

y′ + tan(x)y = 2 cos2(x) sin(x)− sec(x)

The integrating factor is:

µ(x) = e
∫
tan(x) dx = sec(x)

Multiplying the equation by the integrating factor:

sec(x)y′ + sec(x) tan(x)y = 2 sec(x) cos2(x) sin(x)− sec2(x)

d

dx
[sec(x)y] = 2 cos(x) sin(x)− sec2(x)

Integrating both sides:

sec(x)y =

∫
(2 cos(x) sin(x)− sec2(x)) dx =

∫
sin(2x) dx−

∫
sec2(x) dx

sec(x)y = −1

2
cos(2x)− tan(x) + C

Solving for y(x):

y(x) = cos(x)

(
−1

2
cos(2x)− tan(x) + C

)
y(x) = −1

2
cos(x) cos(2x)− cos(x) tan(x) + C cos(x)

y(x) = −1

2
cos(x) cos(2x)− sin(x) + C cos(x)

Using the initial condition y
(
π
4

)
= 3

√
2, we have:

3
√
2 = −1

2
·
√
2

2
· 0−

√
2

2
+ C ·

√
2

2
⇒ 3

√
2 = −

√
2

2
+ C ·

√
2

2
⇒ C = 7

Thus, the solution is:

y(x) = −1

2
cos(x) cos(2x)− sin(x) + 7 cos(x)
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Bernoulli Differential Equations

A Bernoulli equation is a first-order nonlinear differential equation of the
form:

dy

dx
+ P (x)y = Q(x)yn, n ̸= 0, 1.

Method of Solution

1. Divide both sides by yn (assuming y ̸= 0):

y−ndy

dx
+ P (x)y1−n = Q(x).

2. Make the substitution:

v = y1−n ⇒ dv

dx
= (1− n)y−ndy

dx
.

3. Replace y−n dy
dx in the equation to get a linear equation in v:

dv

dx
+ (1− n)P (x)v = (1− n)Q(x).

4. Solve this linear first-order ODE using the integrating factor method:

µ(x) = e
∫
(1−n)P (x) dx.

5. After finding v(x), use the back-substitution y = v
1

1−n .

Example.

Solve
dy

dx
+ y = xy2.

This is a Bernoulli equation with P (x) = 1, Q(x) = x, and n = 2.
Dividing both sides by y2 gives

y−2dy

dx
+ y−1 = x.
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Let v = y−1, so that dv
dx = −y−2 dy

dx . Substituting into the equation yields

−dv

dx
+ v = x, or equivalently

dv

dx
− v = −x.

This is a linear first-order equation in v. The integrating factor is

µ(x) = e−
∫
1 dx = e−x.

Multiplying through by e−x,

e−xdv

dx
− e−xv = −xe−x.

The left-hand side is the derivative of ve−x, so

d

dx
(ve−x) = −xe−x.

Integrating both sides gives

ve−x =

∫
−xe−xdx = (x+ 1)e−x + C.

Hence,

v = x+ 1 + Cex.

Substituting back v = y−1, we obtain the general solution

y =
1

x+ 1 + Cex
.

At x = 0, if C = 0, then y(0) = 1
1+0 = 1. This can serve as an initial

condition if specified.

Example.

Solve the initial value problem

dy

dx
− 2y

x
= x2y3, y(1) = 1, x > 0.
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This is a Bernoulli equation with P (x) = −2

x
, Q(x) = x2, n = 3. Dividing

both sides by y3 (assuming y ̸= 0) gives

y−3dy

dx
− 2y−2

x
= x2.

Let v = y−2, so that
dv

dx
= −2y−3dy

dx
, or equivalently

y−3dy

dx
= −1

2

dv

dx
.

Substituting in the equation yields

−1

2

dv

dx
− 2v

x
= x2,

which simplifies to
dv

dx
+

4v

x
= −2x2.

This is a first-order linear differential equation in v. The integrating factor
is

µ(x) = e
∫

4
x dx = e4 lnx = x4.

Multiplying through by x4,

x4
dv

dx
+ 4x3v = −2x6,

which gives
d

dx
(x4v) = −2x6.

Integrating both sides:

x4v = −2x7

7
+ C.

Hence,

v = −2x3

7
+

C

x4
.

Recalling v = y−2,

y−2 = −2x3

7
+

C

x4
, or y =

1√
−2x3

7
+

C

x4

.
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Applying the initial condition y(1) = 1:

1−2 = −2(1)3

7
+

C

(1)4
⇒ 1 = −2

7
+ C ⇒ C =

9

7
.

Thus the particular solution is

y(x) =
1√

−2x3

7
+

9

7x4

=

√
7√

−2x3 + 9
x4

.

Interval of Convergence. For y(x) to be real and defined, the denomina-
tor must be positive:

−2x3

7
+

9

7x4
> 0 =⇒ −2x7 + 9 > 0 =⇒ x7 <

9

2
.

Hence,

0 < x <
7

√
9

2
≈ 1.48.

Therefore, the solution is valid for x > 0 and x < 7
√

9/2.

y(x) =
1√

−2x3

7
+

9

7x4

, 0 < x <
7

√
9

2
.

Separable Equations

We now consider nonlinear first-order differential equations, starting with
separable equations. A differential equation is separable if it can be written
as:

N(y)
dy

dx
= M(x)

This means all y-terms are with dy and all x-terms are with dx. Rear-
ranging gives:

N(y) dy = M(x) dx
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We solve by integrating both sides:∫
N(y) dy =

∫
M(x) dx

This gives an implicit solution, which may or may not be solvable for an
explicit solution y = y(x).

Be aware of the interval of validity: the solution is only valid where it
is defined (no division by zero, negative logs, etc.).

Most separable equations can be solved using this straightforward tech-
nique. We begin with a simple example to illustrate the method.

Example 1

Solve the differential equation:

dy

dx
= 6y2x, y(1) =

1

25

This is a separable equation:

y−2dy = 6x dx

Integrating both sides:∫
y−2dy =

∫
6x dx ⇒ −1

y
= 3x2 + C

Apply the initial condition y(1) = 1
25 :

− 1

1/25
= 3(1)2 + C ⇒ −25 = 3 + C ⇒ C = −28

So the solution is:

−1

y
= 3x2 − 28 ⇒ y(x) =

1

28− 3x2

Interval of Validity:
To avoid division by zero, we require:

28− 3x2 ̸= 0 ⇒ x ̸= ±
√

28

3
≈ ±3.055
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The valid intervals are:

(−∞,−
√
28/3), (−

√
28/3,

√
28/3), (

√
28/3,∞)

Since the initial condition is at x = 1, the correct interval of validity is:

−
√
28/3 < x <

√
28/3

Note: With different initial conditions, the solution remains the same,
but the interval of validity changes:

� If y(−4) = − 1
20 , then the interval is (−∞,−

√
28/3)

� If y(6) = − 1
80 , then the interval is (

√
28/3,∞)

Example 2

Solve the IVP:
dy

dx
=

3x2 + 4x− 4

2y − 4
, y(1) = 3

This is a separable equation. Rearranging and integrating:

(2y − 4)dy = (3x2 + 4x− 4)dx∫
(2y − 4) dy =

∫
(3x2 + 4x− 4) dx ⇒ y2 − 4y = x3 + 2x2 − 4x+ C

Apply the initial condition y(1) = 3:

32−4(3) = 13+2(1)2−4(1)+C ⇒ 9−12 = 1+2−4+C ⇒ −3 = −1+C ⇒ C = −2

So the implicit solution is:

y2 − 4y = x3 + 2x2 − 4x− 2

Solve explicitly using the quadratic formula:

y =
4±

√
16 + 4(x3 + 2x2 − 4x− 2)

2
= 2±

√
x3 + 2x2 − 4x+ 2

Use the initial condition to determine the correct sign:

y(1) = 2±
√
1 + 2− 4 + 2 = 2±

√
1 = 2± 1 ⇒ y(1) = 3 ⇒ use +
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Thus, the explicit solution is:

y(x) = 2 +
√

x3 + 2x2 − 4x+ 2

Interval of Validity:
We require the argument of the square root to be non-negative:

x3 + 2x2 − 4x+ 2 ≥ 0

Graphing, the real root is approximately x ≈ −3.36523, so the interval of
validity is:

x ≥ −3.36523

which contains x = 1, satisfying the initial condition.

Homogeneous Differential Equations

1. Definition.

A first-order differential equation of the form

dy

dx
= F (x, y)

is said to be **homogeneous** if the function F (x, y) satisfies

F (tx, ty) = F (x, y) for all t > 0.

That is, F (x, y) is homogeneous of degree 0.
Equivalently, the differential equation

M(x, y) dx+N(x, y) dy = 0

is homogeneous if both M and N are homogeneous functions of the **same
degree**.

Recall: a function f(x, y) is homogeneous of degree n if

f(tx, ty) = tnf(x, y).

—
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2. Standard Form and Substitution.

If
dy

dx
= F

(y
x

)
,

then the equation is homogeneous. We use the substitution:

y = vx ⇒ dy

dx
= v + x

dv

dx
.

Substitute these into the original equation. This converts the given ho-
mogeneous equation into a **separable equation** in v and x.

—

3. Method of Solution.

1. Express the given ODE as
dy

dx
= F (y/x).

2. Substitute y = vx, so that
dy

dx
= v + x

dv

dx
.

3. Replace y/x by v everywhere and simplify.

4. Rearrange to get a separable equation in v and x:

dv

dx
= g(v, x) ⇒ dv

f(v)
=

dx

x
.

5. Integrate both sides and then back-substitute v = y/x to get the final
relation between x and y.

—

4. Example.

Solve
dy

dx
=

x+ y

x− y
.

Solution. The right-hand side depends only on y/x, so the equation is
homogeneous.
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Let y = vx. Then
dy

dx
= v + x

dv

dx
.

Substituting in:

v + x
dv

dx
=

x+ vx

x− vx
=

1 + v

1− v
.

Simplify:

x
dv

dx
=

1 + v

1− v
− v =

1 + v − v(1− v)

1− v
=

1 + v2

1− v
.

Hence:
1− v

1 + v2
dv =

dx

x
.

Integrate both sides: ∫
1− v

1 + v2
dv =

∫
dx

x
.

Split the integral on the left:∫
dv

1 + v2
−
∫

v dv

1 + v2
= ln |x|+ C.

The first term is tan−1 v, and the second is 1
2 ln(1 + v2). Thus:

tan−1 v − 1

2
ln(1 + v2) = ln |x|+ C.

Substituting back v = y
x , we get

tan−1
(y
x

)
− 1

2
ln

(
1 +

y2

x2

)
= ln |x|+ C.

Simplifying the logarithmic term:

tan−1
(y
x

)
− 1

2
ln(x2 + y2) = C ′.

Hence, the general solution is:

tan−1
(y
x

)
− 1

2
ln(x2 + y2) = C.
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5. Remarks.

� The key idea in solving homogeneous equations is the substitution y =
vx.

� This converts the equation into a separable form.

� After integration, always replace v by y/x to get the final result.

Exact Equations

We now explore a new class of first-order differential equations: exact equa-
tions. Before diving into the solution method, we demonstrate the concept
using an example.

Example 1

2xy − 9x2 + (2y + x2 + 1)
dy

dx
= 0

Assume a function Ψ(x, y) exists such that:

Ψ(x, y) = y2 + (x2 + 1)y − 3x3

Then,
∂Ψ

∂x
= 2xy − 9x2,

∂Ψ

∂y
= 2y + x2 + 1

So the equation becomes:

d

dx
[Ψ(x, y(x))] = 0 ⇒ Ψ(x, y) = C

Implicit solution:
y2 + (x2 + 1)y − 3x3 = C

General Form

A differential equation is exact if:

M(x, y) +N(x, y)
dy

dx
= 0
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and there exists a function Ψ(x, y) such that:

∂Ψ

∂x
= M,

∂Ψ

∂y
= N

Then the solution is:
Ψ(x, y) = C

To test for exactness:
∂M

∂y
=

∂N

∂x

Example 2:

2xy − 9x2 + (2y + x2 + 1)
dy

dx
= 0, y(0) = −3

M = 2xy − 9x2 ⇒ My = 2x, N = 2y + x2 + 1 ⇒ Nx = 2x

Exact equation.
Integrate M with respect to x:

Ψ(x, y) =

∫
(2xy − 9x2) dx = x2y − 3x3 + h(y)

Differentiate with respect to y:

∂Ψ

∂y
= x2 + h′(y) = 2y + x2 + 1 ⇒ h′(y) = 2y + 1 ⇒ h(y) = y2 + y

So:
Ψ(x, y) = x2y − 3x3 + y2 + y

Implicit solution:
x2y − 3x3 + y2 + y = C

Apply initial condition y(0) = −3:

0 + 9− 3 = C ⇒ C = 6

y2 + (x2 + 1)y − 3x3 = 6

Solve using quadratic formula:

y = −(x2 + 1)±
√

(x2 + 1)2 + 12x3 + 24

2
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Choose − sign based on initial condition:

y(x) = −(x2 + 1)−
√
x4 + 12x3 + 2x2 + 25

2

Interval of validity:

x4 + 12x3 + 2x2 + 25 ≥ 0 ⇒ x ≥ −1.396911133

Example 3

2xy2 + 4 = 2(3− x2y)y′, y(−1) = 8

Rewriting:
2xy2 + 4 + 2(x2y − 3)y′ = 0

M = 2xy2 + 4, N = 2x2y − 6

My = 4xy, Nx = 4xy ⇒ Exact

Integrate N w.r.t. y:

Ψ(x, y) =

∫
(2x2y − 6)dy = x2y2 − 6y + h(x)

Differentiate w.r.t. x:

∂Ψ

∂x
= 2xy2 + h′(x) = 2xy2 + 4 ⇒ h′(x) = 4 ⇒ h(x) = 4x

Ψ(x, y) = x2y2 − 6y + 4x

Implicit solution:
x2y2 − 6y + 4x = C

Apply initial condition:

64− 48− 4 = C ⇒ C = 12

x2y2 − 6y + 4x− 12 = 0

Solve for y:

y =
6±

√
36 + 48x2 − 16x3

2x2
= 3±

√
9 + 12x2 − 4x3

x2



93

Use initial condition to choose “+”:

y(x) = 3 +

√
9 + 12x2 − 4x3

x2

Interval of validity:

x ̸= 0, 9 + 12x2 − 4x3 > 0 ⇒ x ∈ (−∞, 0) since x = −1 is valid

(−∞, 0)

Non-Exact Differential Equations

1. Definition.

A first-order differential equation of the form

M(x, y) dx+N(x, y) dy = 0

is called **exact** if there exists a function F (x, y) such that

∂F

∂x
= M(x, y),

∂F

∂y
= N(x, y).

That is, the equation represents the total differential dF = 0.

If this condition is not satisfied—i.e.

∂M

∂y
̸= ∂N

∂x
,

then the equation is said to be **non-exact**.
—

2. The Idea.

Even when the given equation is not exact, it may be possible to multiply it
by a function µ(x, y), called an **integrating factor**, which makes it exact.

Thus we look for µ(x, y) such that

µ(x, y)M(x, y) dx+ µ(x, y)N(x, y) dy = 0

becomes exact.
—
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3. Condition for Exactness.

For an equation M dx+N dy = 0, exactness requires

∂M

∂y
=

∂N

∂x
.

If this does not hold, one may find an integrating factor µ satisfying:

∂(µM)

∂y
=

∂(µN)

∂x
.

—

4. Common Cases for Integrating Factors.

1. If
1

N

(
∂M

∂y
− ∂N

∂x

)
is a function of x only, then an integrating factor depending on x exists
and is given by

µ(x) = e
∫

1
N (

∂M
∂y −∂N

∂x )dx .

2. If
1

M

(
∂N

∂x
− ∂M

∂y

)
is a function of y only, then an integrating factor depending on y exists
and is given by

µ(y) = e
∫

1
M (

∂N
∂x −

∂M
∂y )dy .

—

5. Example.

Solve
(2xy + y2) dx+ (x2 + 2xy) dy = 0.

Here,
M = 2xy + y2, N = x2 + 2xy.
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Compute the partial derivatives:

∂M

∂y
= 2x+ 2y,

∂N

∂x
= 2x+ 2y.

Thus,
∂M

∂y
=

∂N

∂x
, so in fact the equation is exact. For demonstration, let us

modify slightly to make it non-exact.

Consider instead:

(2xy + y2) dx+ (x2 + 3xy) dy = 0.

Now,

∂M

∂y
= 2x+ 2y,

∂N

∂x
= 2x+ 3y,

which are not equal; hence it is non-exact.

We test for an integrating factor depending on x:

1

N

(
∂M

∂y
− ∂N

∂x

)
=

1

x2 + 3xy

[
(2x+ 2y)− (2x+ 3y)

]
=

−y

x2 + 3xy
,

which is not a function of x alone.

Next, test for an integrating factor depending on y:

1

M

(
∂N

∂x
− ∂M

∂y

)
=

1

2xy + y2
[
(2x+3y)−(2x+2y)

]
=

y

2xy + y2
=

1

y(2x/y + 1)
.

This expression simplifies to a function of y only when x/y is constant (i.e.
along straight lines), so no simple µ(y) exists in this case.

However, note that the equation can be divided by y2 to yield a homoge-
neous form: (

2
x

y
+ 1

)
dx+

((
x

y

)2

+ 3
x

y

)
dy = 0,

which may be solved by the substitution v = x/y.

Hence, when an equation is not exact, one either looks for an integrating
factor or converts it into a homogeneous or separable form.
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6. Summary.

� An exact equation satisfies
∂M

∂y
=

∂N

∂x
.

� A non-exact equation can sometimes be made exact using an integrating
factor µ(x) or µ(y).

� If no simple integrating factor exists, attempt other transformations
(e.g. homogeneous substitution).


