King Saud University

College of Sciences

Department of Mathematics

Final Examination

Math 106

Semester I

1439-1440

Time: 3H

Exercise 1:(2+2)

1. Approximate
$$\int_0^4 \sqrt{x^3 + 8} dx$$
 using Simpson's rule with $n = 4$.

2. If
$$F(x) = (2 + \sin(x))^{e^x}$$
, find $F'(x)$.

Exercise 2:(3+3+3)

1. Evaluate
$$\int \frac{(3^x+1)^2}{3^x} dx.$$

2. Find
$$\int \frac{dx}{\sqrt{2^{2x}-1}}.$$

3. Compute
$$\int \frac{dx}{\sqrt{x}\sqrt{1+x}}.$$

Exercise 3:(3+3+3)

1. Compute
$$\int \frac{dx}{x\sqrt{4-x^6}}.$$

2. Evaluate
$$\int \frac{dx}{(x^2 - 1)^{\frac{3}{2}}}.$$

3. Find
$$\int \frac{4x^2}{(x-1)^2(x+1)} dx$$
.

Exercise 4:(3+3+3)

1. Does the integral $\int_0^{+\infty} (1+2x)e^{-x}dx$ converge? Find its value if it does.

- 2. Sketch the region bounded by $y=(x-1)^2$, y=3-x and the x-axis and find its area.
- 3. Sketch the region bounded by $x = y^2 + 2$ and $x = 4 y^2$ and set up an integral for the volume obtained by revolving the region about the line of equation x = -1.

Exercise 5:(3+3+3)

- 1. Find the length of the curve given by: $x=\frac{t^3}{3}, y=\frac{2}{9}t^{\frac{9}{2}}, t\in[0,1].$
- 2. Sketch the region inside the polar curve $r = 3 + 3\cos(\theta)$ and to the left of the y-axis and find its area.
- 3. Find the area of the surface obtained by revolving the curve of equation $r=8\cos(\theta), \, \theta \in [0,\frac{\pi}{2}]$ about the y-axis.