Math Department

January 15 2017

Final exam106

Time: 180mn

Question 1(2+2+3)

a) Find the constant c that satisfies the equation

$$\sum_{k=1}^{k=9} (3k^2 - k + c) = 900$$

- b) Compute the integral $\int \frac{\sin(3\sqrt{x}+1)}{\sqrt{x}} dx$
- c) Approximate the integral $\int_0^4 \frac{dx}{1+x^3}$ using Simpson's Rule with n=4

Question 2(3+3+3)

- a) Evaluate the integral $\int \frac{e^{1+2cosh^{-1}x}dx}{\sqrt{x^2-1}}$
- b) Compute the integral $\int \frac{dx}{x\sqrt{x^4-16}}$
- c) Find the limit $\lim_{x\to 0} \frac{\int_0^x (\sin t t) dt}{x^4}$

Question 3(3+3+2)

- a) Compute the following integral $\int x^2 lnx dx$
- b) Find the integral $\int (\sin x)^5 \cos^3 x dx$
- c) Evaluate the integral $\int \cos 4x \cdot \cos 2x dx$

Scanned by CamScanner

Question 4(3+2+3)

- a) Evaluate the integral $\int \frac{5x^2 + 5x + 2}{(x+1)^2(x-1)} dx$
- b) Compute the integral $\int \frac{dx}{x^{\frac{3}{2}} + x^{\frac{1}{2}}}$
- c) Sketch the region bounded by the curves: $y = x^2$, $y = \sqrt{x}$, x = 0, and x = 2 and find its area.

Question5(3+3+2)

- a) Find the volume of the solid generated by revolving the region bounded by the curves $y=x,y=\sqrt{x}$ about the line y=2
- b) Sketch the region R that lies inside the curve $r=1+cos\theta$ and outside the curve $r=1-cos\theta$, and find its area.
- c) Find the surface area obtained by revolving the curve $r=4cos\theta~~0\leq\theta\leq\pi/2~$ about the x-axis