

FINAL EXAMINATION, SEMESTER I, 2024
DEPT. MATH., COLLEGE OF SCIENCE, KSU
MATH: 107 FULL MARK: 40 TIME: 3 HOURS

Q1. [3+2+4=9]

(a) Solve the system of linear equations by Gaussian elimination:

$$x + 2y - z = 2$$

$$x - 2y + 3z = 1$$

$$x + 2y - z = 2$$

(b) Explain why the above system of linear equations cannot be solved by Cramer's rule.

(c) Find the inverse of the matrix A by using $\text{adj}(A)$, where

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 0 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix}$$

Q2. [3+3=6]

(a) Find the volume of a box having adjacent sides AB , AC and AD where $A(2, 1, -1)$, $B(3, 0, 2)$, $C(4, -2, 1)$ and $D(5, -3, 0)$.

(b) Find the velocity, speed and acceleration of a particle that moves along the plane curve

$$\mathbf{r}(t) = \langle t \sin(2t); t \cos(2t) \rangle \text{ at } t = 0.$$

Q3. [3+2+3=8]

(a) The position vector of a moving point at time t is $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + \mathbf{k}$. Find the tangential and normal components of acceleration, and curvature.

(b) Find the domain of the function defined by $f(x, y) = \sqrt{1+y-x} + \sqrt{x+y-1} + \ln(1-x^2-y)$.

(c) Prove that the limit

$$\lim_{(x,y) \rightarrow (0,0)} \frac{x^4+y^3}{y^2+(y^2+x^2)^2}$$

does not exist.

Q4. [3+2+3=8]

(a) Use Chain rule to find $\frac{\partial p}{\partial r}$ and $\frac{\partial p}{\partial s}$ if $p = u^2 + 3v^2 - 4w^2$ with $u = 2r - s$, $v = -r + 2s$, $w = r + s$.

(b) If $w = f(x^2 + y^2)$, show that $y \frac{\partial w}{\partial x} - x \frac{\partial w}{\partial y} = 0$.

(c) Let $f(x, y, z) = xy^2 e^z$. Find the directional derivative of f at the point $P(2, -1, 0)$ in the direction of vector $\mathbf{a} = 4\mathbf{i} - 2\mathbf{j} + 4\mathbf{k}$.

Q5 [3+4+2=9]

(a) Identify the surface $z = x^2 + y^2$, and find an equation for the tangent plane and parametric equations for the normal line to the given surface at the point $(-1, 1, 2)$.

(b) Find the local extrema and saddle points of the function defined by

$$f(x, y) = 9x^2y - 6x^3 + y^3 - 12y.$$

(c) Find the three positive numbers whose sum is 1 and whose product is a maximum.