King Saud University: Third Semester Maximum Marks $=30$

Question 1: Show that the one of the possible rearrangement of the nonlinear equation $e^{x}-x^{2}=2-3 x$, which has root in $[0,0.6]$ is

$$
x_{n+1}=g\left(x_{n}\right)=\frac{2-e_{n}^{x}+x_{n}^{2}}{3} ; \quad n=0,1, \ldots
$$

Show that $g(x)$ has a unique fixed-point in $[0,0.6]$. Determine the number of iterations needed to get an approximation with accuracy 10^{-5} to the solution of $g(x)=\frac{2-e^{x}+x^{2}}{3}$ lying in the interval $[0,0.6]$ by using the fixed-point iteration method and $x_{0}=0.5$. [6 Marks]

Question 2: Show that the rate of convergence of Newton's method at the root $\alpha=1$ of the equation $(x-1)^{2} \sin x=0$ is linear. Use quadratic convergence method to find x_{2} using $x_{0}=1.5$. Compute the relative error.

Question 3: Find the values of a, b and c such that the iterative scheme

$$
x_{n+1}=a x_{n}+\frac{b N}{x_{n}^{2}}+\frac{c N^{2}}{x_{n}^{5}}, \quad n \geq 0
$$

converges at least cubically to $\alpha=N^{\frac{1}{3}}$. Use this scheme to find second approximation of (8) $)^{\frac{1}{3}}$ when $x_{0}=1.8$.

Question 4: Use the simple Gaussian elimination method to find the inverse A^{-1} of the
following matrix

$$
A=\left(\begin{array}{rrr}
1 & -1 & 2 \alpha \\
2 & 2 & 4 \\
0 & 4 & 8
\end{array}\right)
$$

by using largest negative integer value of α. Use A^{-1} to find the unique solution of the system $A \mathrm{x}=[-4,8,12]^{T}$.
[6 Marks]
Question 5: Use LU decomposition by Dollittle's method to find the value(s) of nonzero α for which the linear system $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{rrr}
\alpha & 4 & 1 \\
2 \alpha & -1 & 2 \\
1 & 3 & \alpha
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
6 \\
3 \\
5
\end{array}\right),
$$

is inconsistent and consistent. Solve the consistent system.

