Differential and Integral Calculus (MATH-205)

MT-II Exam/Fall 2023
Date: Wed., November 8, 2023 Maximum Marks: 25

Note: Attempt all FIVE questions and give detailed solutions. Read statements of the questions carefully and make sure you have answered each question completely.

Question 1: $\left(4^{\circ}\right)$ Given $\mathbf{a}=5 \hat{\mathbf{i}}-6 \hat{\mathbf{j}}-\hat{\mathbf{k}}, \mathbf{b}=-2 \hat{\mathbf{i}}+3 \hat{\mathbf{j}}+\hat{\mathbf{k}}$, and $\mathbf{c}=3 \hat{\mathbf{i}}+\hat{\mathbf{k}}$. Show that $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$. Hence, find the volume of the parallelepiped (box) whose edges are \mathbf{a}, \mathbf{b} and \mathbf{c}.

Question 2: $\left(6^{\circ}\right)$ Show that p_{1} and p_{2}, given below, are not parallel planes.

$$
p_{1}: 2 x-y+4 z=4, \quad p_{2}: x+3 y-2 z=1
$$

Find the line of intersection of these planes in symmetric form. Also, find the angle between these planes.

Question 3: $\left(5^{\circ}\right)$ Identify and describe the surface: $x^{2}+16 y+4 z^{2}=0$. Find, sketch, and describe its traces in xy-, yz-, xz-, and $y=-2$ planes.

Question 4: $\left(5^{\circ}\right)$ Let C be the curve with parametric equations

$$
C: x=t, y=t^{2}, z=t^{3}, t \geq 0
$$

Find parametric equations for the tangent line to C at the point corresponding to $t=\sqrt{2}$.

Question 5: $\left(5^{\circ}\right)$ If the acceleration of an object is given by

$$
\mathbf{a}(t)=(t+1)^{-\frac{3}{2}} \hat{\mathbf{i}}+2 \hat{\mathbf{j}}+6 \ln (t+1) \hat{\mathbf{k}}, \quad t \geq 0
$$

Find the object's velocity and position functions given that the initial velocity is $\mathbf{v}(0)=\hat{\mathbf{j}}-\hat{\mathbf{k}}$ and the initial position is $\mathbf{r}(0)=\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}}$.

