Department of Mathematics, College of Sciences King Saud University, Riyadh.

M-203 (Differential and Integral Calculus)

 2^{nd} MidTerm Examination (2^{nd} semester 1446) (2024/2025),

Time: 90 Minutes Max. Marks: 25.

Note: All questions carry equal marks.

Q 1. Evaluate the double integral:

$$\int_0^1 \int_{y^2}^1 \frac{1}{1 + x\sqrt{x}} dx dy.$$

Q 2. Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the xy-plane and inside the cylinder $x^2 + y^2 = 2x$.

Q 3. Find the surface area of the portion of the paraboloid $z = 2 - \frac{x^2}{2} - \frac{y^2}{2}$ that lies above the xy-plane.

 ${f Q}$ 4. Use cylindrical coordinates to evaluate the integral:

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x dz dy dx.$$

Q 5. Find the volume of the solid that lies outside the cone $z^2 = x^2 + y^2$ and inside the sphere $x^2 + y^2 + z^2 = 9$.

Department of Mathematics, College of Sciences King Saud University, Riyadh.

M-203 (Differential and Integral Calculus)

 2^{nd} MidTerm Examination (2^{nd} semester 1446) (2024/2025),

Time: 90 Minutes

Max. Marks: 25.

Note: All questions carry equal marks.

Q 1. Evaluate the double integral:

$$\int_0^1 \int_{y^2}^1 \frac{1}{1 + x\sqrt{x}} dx dy.$$

Q 2. Find the volume of the solid that lies under the paraboloid $z=x^2+y^2$, above the xy-plane and inside the cylinder $x^2+y^2=2x$.

Q 3. Find the surface area of the portion of the paraboloid $z = 2 - \frac{x^2}{2} - \frac{y^2}{2}$ that lies above the xy-plane.

Q 4. Use cylindrical coordinates to evaluate the integral:

$$\int_{-2}^{2} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{x^2+y^2}^{4} x dz dy dx.$$

Q 5. Find the volume of the solid that lies outside the cone $z^2 = x^2 + y^2$ and inside the sphere $x^2 + y^2 + z^2 = 9$.