KING SAUD UNIVERSITY COLLEGE OF SCIENCES DEPARTMENT OF MATHEMATICS

Semester 462 / MATH-244 (Linear Algebra) / Mid-term Exam 2 Max. Marks: 25 Max. Time: $1\frac{1}{2}$ hrs.

Note: Calculators are not allowed.

Question 1: [Marks: 1+1+1+1+1]

Which of the given choices are correct?

- (i) Let P_2 be the vector space of all real polynomials in one variable of degree ≤ 2 and $S = \{u, v\} \subseteq P_2$. If E denotes the set of all linear combinations of the vectors in S, then the set E is equal to:
 - (a) $\{\alpha u + v \mid \alpha \in \mathbb{R}\}$ (b) $\{u + \beta v \mid \beta \in \mathbb{R}\}$ (c) P_2 (d) a vector space.
- (ii) If $W = \{w_1, w_2, w_3, w_4\}$ spans the vector space V, then:
 - (a) dim(V) = 3 (b) dim(V) = 4 (c) dim(V) > 4 (d) $dim(V) \le 4$.
- (iii) Consider the vector space \mathbb{R}^2 with ordered basis $\mathbf{B} = \{(1,0), (1,2)\}$. If $\mathbf{v} \in \mathbb{R}^2$ with the coordinate vector $[\mathbf{v}]_{\mathbf{B}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, then:
 - (a) v = (1,0) (b) v = (3,4) (c) v = (1,2) (d) v = (2,2).
- (iv) Which of the following matrices cannot be a transition matrix?
 - (a) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ (b) $\begin{bmatrix} 0 & 0 & 3 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}$.
- (v) If A is an invertible matrix of order 3, then rank(A) is equal to:

(a) 0 (b) 1 (c) 2 (d) 3.

Question 2: [Marks: 3 + 2 + 2 + 3]

Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 1 & 1 & 2 \end{bmatrix}$.

- (a) Find a basis B_1 for the null space N(A).
- (b) Find a basis B_2 for the column space col(A).
- (c) Find *nullity* and *rank* of the matrix A.
- (d) Show that $B_1 \cup B_2$ is a basis for the Euclidean space \mathbb{R}^3 .

Question 3: [Marks: 3 + 7]

Consider a vector space E of dimension 3. Let $\mathbf{B} = \{u_1, u_2, u_3\}$ and $\mathbf{C} = \{v_1, v_2, v_3\}$ be two ordered bases for E such that the transition matrix $\mathbf{CP_B} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ from \mathbf{B} to \mathbf{C} . Then, compute:

- (a) Transition matrix $_{B}P_{C}$ from C to B.
- (b) Coordinate vectors $[v_1 v_2]_{\mathbf{C}}$, $[v_1 v_2]_{\mathbf{B}}$ and $[v]_{\mathbf{C}}$, where $v = v_1 2u_2 + v_3$.