

King Saud University

College of Sciences

Department of Mathematics

Math-244 (Linear Algebra); Mid-term Exam; Semester 2 (1442)

Max. Marks: 30

Time: 2 hours

Note: Attempt all the five questions!

Question 1: [Marks: 3+3]

a) Let $A = \begin{bmatrix} -1 & 1 & 3 & 0 \\ 1 & 2 & 3 & -2 \\ 0 & -1 & -2 & 7 \\ 2 & 1 & 0 & 6 \end{bmatrix}$. Then:

i) Find the reduced row echelon form of the matrix A.
ii) Use the reduced row echelon form to show that the matrix A is not invertible.

b) Let $X = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & \sqrt{2} \end{bmatrix}$. Find the value of λ such that $X^8 - 4\lambda I = 0$.

Question 2: [Marks: 3+3]

a) Let $X = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$. Find the matrix Y such that $(2X + Y)^{-1} = adj(X)$.

b) Let $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & bc & a \\ 1 & ca & b \\ 1 & ab & c \end{bmatrix}$. Show that $det(B) = -det(A)$.

Question 3: [Marks: 3+3].

a) Find the value/s of α such that the following linear system

$$\begin{aligned} x + y + \frac{\alpha}{3}z &= 1 \\ x + y + z &= 1 \\ x + \alpha y + z &= 2 \end{aligned}$$

has: (i) no solution (ii) unique solution (iii) infinitely many solutions.

b) Solve the following homogeneous linear system. Why this system cannot be solved by Cramer's Rule?

$$\begin{aligned} x - 2y + 3z &= 0 \\ 3x + y - 2z &= 0 \\ 2x - 4y + 6z &= 0. \end{aligned}$$

Question 4: [Marks: 3+3]

- a) Show that $\{1 - x, 1 - x^2, 1 + x + x^2\}$ is a **basis** of the **vector space P_2** of all polynomials in real variable x with **degree ≤ 2** .
- b) Let $S = \{(1, 0, 1, 1), (1, -1, 2, 1), (1, -2, 3, 1)\}$ generates the vector subspace F of the Euclidean space \mathbb{R}^4 . Find a **basis** of F contained in S and show that $(0, -2, 7, 6) \notin F$.

Question 5: [Marks: 3+3]

- a) Let $B = \{(2, 1), (1, 0)\}$ and $C = \{(1, -2), (0, 1)\}$ be **bases** of the Euclidean space \mathbb{R}^2 and $v = (1, 2)$. Find the **coordinate vector** $[v]_B$ and the **transition matrix** cP_B . Then use the transition matrix to **find** $[v]_C$.
- b) Let $A = \begin{bmatrix} 1 & 1 & 0 & 2 & 3 \\ 2 & 1 & 1 & 1 & 0 \\ -1 & -2 & 1 & 0 & 1 \\ -2 & -2 & 0 & 1 & 4 \end{bmatrix}$. Find:
 - (i) a **basis** of $col(A)$
 - (ii) **rank** (A)
 - (iii) **nullity** (A).

###!