

[Solution Key]

KING SAUD UNIVERSITY
COLLEGE OF SCIENCES
DEPARTMENT OF MATHEMATICS

Semester 452 / MATH-244 (Linear Algebra) / Mid-term Exam 2

Max. Marks: 25

Max. Time: $1\frac{1}{2}$ hr**Question 1:** [Marks: (1+2+2) + (1+2)]

a) Determine whether the following statements are true. Justify your answers.

i) $\{(a, b, c) \mid a, b, c \text{ are non-negative real numbers}\}$ is a subspace of \mathbb{R}^3 .Solution: This statement is not true because the set $\{(a, b, c) \mid a, b, c \text{ are non-negative real numbers}\}$ is not closed under scalar multiplication; for example, take the scalar $k = -1$. [Mark 1]ii) For any fixed matrix $Y \in M_n(\mathbb{R})$, $\{\mathbf{A} \in M_n(\mathbb{R}) \mid AY = YA\}$ is a subspace of the vector space $M_n(\mathbb{R})$ of all real matrices of type $n \times n$.Solution: This is a true statement because $0Y = 0 = Y0$ and $(\alpha A + B)Y = \alpha(AY) + BY = Y(\alpha A) + YB = Y(\alpha A + B)$ for all $\mathbf{A}, \mathbf{B} \in \{\mathbf{A} \in M_n(\mathbb{R}) \mid AY = YA\}$, $\alpha \in \mathbb{R}$. [Marks 0.5+1.5]iii) Any set of five 2×2 matrices must be linearly dependent.Solution: This statement is true because vector space $M_2(\mathbb{R})$ of all real matrices of type 2×2 is of dimension 4 and so any set of five 2×2 matrices must be linearly dependent. [Marks 1+1]b) Consider the vector subspace $W = \{p(x) \in P_2 \mid p(1) = p(2)\}$ of P_2 , where P_2 denotes the vector space of all real polynomials in x with degree at most 2 under the usual addition and scalar multiplication. Then:i) Show that $P_2 - W \neq \emptyset$.Solution: The polynomial $q(x) = x$ being of degree 1 is in P_2 but $q(1) \neq q(2)$. Hence, $q \in P_2 - W$. [Mark 1]ii) Show that $\{1, (x-1)(x-2)\}$ is a linearly independent subset and explain why it must be a basis for W .Solution: For any $\alpha, \beta \in \mathbb{R}$, $\alpha 1 + \beta(x-1)(x-2) = 0 \Rightarrow \alpha = 0$ (with $x = 1$) and $\beta = 0$ (with $x = 0$). Hence, the subset $\{1, (x-1)(x-2)\}$ of W is linearly independent. But, $\dim W \leq \dim P_2 = 3$ by Part b)/i). Therefore, $\{1, (x-1)(x-2)\}$ must be a basis for W . [Marks 1+0.5+0.5]**Question 2:** [Marks: 3 + 2 + 2 + 2]Let $B := \{u_1 = (2, 1), u_2 = (5, 2)\}$ and $C := \{v_1 = (1, -2), v_2 = (-3, 7)\}$. Then:a) Show that both B and C are bases for the vector space \mathbb{R}^2 .Solution: If we construct the matrices $\hat{B} = \begin{bmatrix} 2 & 5 \\ 1 & 2 \end{bmatrix}$ and $\hat{C} = \begin{bmatrix} 1 & -3 \\ -2 & 7 \end{bmatrix}$ then $\det(\hat{B}) = -1$ and $\det(\hat{C}) = 1$; so, both the matrices \hat{B} and \hat{C} are invertible.; which means that the sets B and C are linearly independent in the 2-dimensional vector space. \mathbb{R}^2 . Hence, both B and C are bases for \mathbb{R}^2 . [Marks 2x0.5+2x 0.5+2x0.5]b) Construct the transition matrix ${}_C P_B$ from the basis B to the basis C .Solution: ${}_C P_B = [[u_1]_C \ [u_2]_C] = \begin{bmatrix} 17 & 41 \\ 5 & 12 \end{bmatrix}$ [Marks 1+2 x1]c) Use the matrix ${}_C P_B$ to find the transition matrix ${}_B P_C$.Solution: ${}_B P_C = {}_C P_B^{-1} = \begin{bmatrix} 17 & 41 \\ 5 & 12 \end{bmatrix}^{-1} = \frac{1}{-1} \begin{bmatrix} 12 & -41 \\ -5 & 17 \end{bmatrix} = \begin{bmatrix} -12 & 41 \\ 5 & -17 \end{bmatrix}$. [Marks 1+1]d) Find the coordinate vectors $[u_1]_C$ and $[v_2]_B$ by using the matrices ${}_C P_B$ and ${}_B P_C$, respectively.Solution: $[u_1]_C = {}_C P_B [u_1]_B = \begin{bmatrix} 17 & 41 \\ 5 & 12 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 17 \\ 5 \end{bmatrix}$ and $[v_2]_B = {}_B P_C [v_2]_C = \begin{bmatrix} -12 & 41 \\ 5 & -17 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 41 \\ -17 \end{bmatrix}$. [Marks 1+1]**Question 3:** [Marks: 2 + 3 + 3]Let $RREF(A) = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $RREF(A^T) = \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ be the reduced row-echelon forms ofa matrix A and its transpose A^T , respectively. Then, find:i) $rank(A)$ and $nullity(A)$.Solution: $rank(A) = \text{number of nonzero rows in } RREF(A) = 2$. Since $rank(A) + nullity(A) = \text{number of columns in } A = 3$, we have $nullity(A) = 3 - 2 = 1$. [Marks 1+1]ii) A basis for each of the vector spaces: $col(A)$, $row(A)$, $N(A)$.Solution: The set of non-zero rows in $RREF(A^T) = \{(1, 0, 1, 2), (0, 1, 1, 1)\}$ is a basis for $col(A)$. [Mark 1]The set of non-zero rows in $RREF(A) = \{(1, 0, 1), (0, 1, 1)\}$ is a basis for $row(A)$. [Mark 1]Since $(0, 0, 0) \neq (1, 1, -1) \in N(A)$ and $\dim N(A) = 1$, $\{(1, 1, -1)\}$ is a basis for $N(A)$. [Mark 1]iii) Three vectors u, v and w such that $u \in \mathbb{R}^3 \setminus row(A)$, $v \in \mathbb{R}^4 \setminus col(A)$ and $w \in \mathbb{R}^3 \setminus N(A)$.Solution: $u := (0, 0, 1) \in \mathbb{R}^3 \setminus row(A)$, $v := (0, 0, 1, 0) \in \mathbb{R}^4 \setminus col(A)$ and $w := (1, 0, 0) \in \mathbb{R}^3 \setminus N(A)$. [Mark 1+1+1]

***/