ME and Amino Acid Requirements of Broiler Breeders

Ceylan Intercontinental Hotel March 29-30, 2010 ASAIM/USB

> Craig Coon University of Arkansas

Energy Components as % of Total Requirement

Broiler Breeder Hen

Metabolizable Energy Requirements for Maintenance, Body Weight Gain and Egg Production

EFFECTIVE AMBIENT TEMPERATURE

FIGURE 1. Schematic representation showing relationship of thermal zones and temperatures.

FARM ANIMALS AND THE ENVIRONMENT

Prediction equations for ME for broiler breeder hens

- Equation 1
- ME = BW0.75[111.9 0.46 T] + 5.6G + 2.45EM
- Equation 2
- ME = BW0.75 [110.3 0.47 T °C + 0.055 (T 22.5)2] + 5.6G + 2.45EM
- *ME = metabolizable energy (kcal/kg0.75)*
- **G** = metabolizable energy for body weight gain (kcal/g)
- *EM* = *metabolizable energy for egg mass synthesis* (*kcal/g*)
- T = temperature (oC)

ME Requirements for Broiler Breeders

$\begin{array}{l} \mathsf{ME} = \mathsf{BW}^{0.75} \left[111.02 - 0.49 \ \mathsf{T} + 0.049 \ (\mathsf{T} - 22.07)^2 \right] + \mathsf{BW} \Delta \left(1/0.77 \ \mathsf{x} \ \mathsf{ERf} + 1/0.38 \ \mathsf{x} \\ \mathsf{ERp} \right) + \mathsf{ECE}/0.73 \ \mathsf{x} \ \mathsf{EM} \end{array}$

ME = metabolizable energy (kcal); BW = body weight (kg^{0.75}); T = temperature (°C); EM= egg mass (kcal/g of egg): BW Δ = body weight change (g/d); ERf = energy retained as fat (kcal); ERp = energy retained as protein (kcal); ECE = energy content of eggs (kcal/g); and EM = egg mass (g).

Changes in Maintenance Energy Requirement with Changes in Temperature

ME Requirements of Broiler Breeders as affected by Temperature

Compare ME Models for Predicting Requirements

31 Wks

Cobb 500 Breeder Management Guide: BW = 3.33 kg; BW change = 2.86 g/d; and EM = 46.86 g/d

45 Wks

Cobb 500 Breeder Management Guide: BW = 3.54 kg; BW change = 2.14 g/d; and EM = 43.10 g/d

ME requirements predicted for maintenance of broiler breeder hens at 21C

	ME _m	(kcal/b/d)	
	Reyes, Univ. of Ark.	Spratt et al, 1990	Rabello et al, 2000
31	242	217	278
45	252	226	292

ME requirements predicted for daily BW gain of broiler breeder hens

	ME _{ABWT}	(kcal/b/d)	
	Reyes, Univ. of Ark.	Spratt et al, 1990	Rabello et al, 2000
31	16.3	21.4	21.8
45	12.2	16.0	16.3

ME requirements predicted for daily egg mass production of broiler breeder hens

	ME _e	(kcal/b/d)	
	Reyes, Univ. of Ark.	Spratt et al, 1990	Rabello et al, 2000
31	108	131	113
45	99	121	103

ME requirements predicted for ME_m , $ME_{\Delta BWT}$, and ME_e for broiler breeder hens

	MEI	(kcal/b/d)	
	Reyes, Univ. of Ark.	Spratt et al, 1990	Rabello et al, 2000
31	366	369	413
45	364	362	412

ME requirements predicted for ME_m , $ME_{\Delta BWT}$, and ME_e plus activity for broiler breeder hens

	MEI+Act.	(kcal/b/d)	
	Reyes, Univ. of Ark.	Spratt et al, 1990	Rabello et al, 2000
31	414	419	413
45	414	392	412

Broiler Breeder ME Requirements 2009/2010

5000 **Breeder BW * ME** 4500 L_A 4000 \bigcirc

EGGS PER HEN HOUSED

AVE. EGG WEIGHT (40 wks)

68

CUMULATIVE EGG MASS (Kg)

YOLK: ALBUMEN RATIO (wet)

Grouth Curve

DEXA Dual Energy X-Ray Absorptiometry

Body Composition Analysis

Total Body Mass (g) Lean Mass (g),% Fat Mass (g), % Total Mineral Content (g), %

Breeder Fat Mass

Total Fat mass of hens reared in 3 different body cruves, measured by DEXA scan

Breeder Fat Mass

Total Fat mass of hens fed 6 different levels of calories at peak production, measured by DEXA scan

Breeder Lean Mass

Total lean mass of hens reared in 3 different body cruves, measured by DEXA scan

Breeder Lean Mass

Total Lean mass of hens fed 6 different levels of calories at peak production, measured by DEXA scan

The Amino Acid Requirements for Production and Fertility of Broiler Breeder Hens at Peak Production

Marc de Beer and Craig N. Coon

University of Arkansas Centre of Excellence for Poultry Science

Protein and Amino Acid Requirements for Breeder Hens

- Are we feeding breeder hens enough quality protein and amino acids for maximum production?
- Are we feeding breeder hens too much protein and amino acids for optimum fertility and persistency of lay?

NRC Broiler Breeder Daily Amino Acid Requirements

Nutrient	Unit/breeder/day	Requirement
Protein	9	19.5
Arginine	mg	1110
Histidine	mg	205
Isoleucine	mg	850
Leucine	mg	1250
Lysine	mg	765
Methionine	mg	450
MET + CYS	mg	700
Phenylalanine	mg	610
PHE + TYR	mg	1112
Threonine	mg	720
Tryptophan	mg	190
Valine	mg	750

ARKANSAS BROILER BREEDER STUDIES

Predicting daily protein need for a male broiler

University of Minnesota (1994)

Broiler Breeder AA Maintenance

AA	mg/b/d	mg/kg cp	mg/kg bw ^{,75}	Ratio
Lys	175.0	333.3	94.2	100.0
Met	99.2	188.3	56.5	56.7
Cys	30.5	75.4	17.0	17.4
TSAA	129.7	263.7	73.5	74.1
Arg	314.4	601.3	173.1	179.6
Thr	242.5	447.7	130.6	138.6
Trp	20.5	35.7	10.7	11.7

Broiler Breeder Ideal AA Maintenance

AA	mg/b/d	mg/kg CP	mg/kg bw ^{.75}	Ratio
Phe	328.8	575.1	163.9	187.9
Tyr	65.9	175.6	37.2	37.6
Phe+Tyr	394.7	750.7	201.1	225.7
Leu	204.8	400.5	117.1	117.0
lle	159.0	318.9	92.4	90.8
Val	199.4	336.7	106.3	113.9
His	74.2	139.6	43.6	42.4
NEA	2414.4	6141.2.6	1301.2.2	1379.6

Digestible Amino Acid Requirements at Peak Production

Amino Acid	Maintenance	Production Req. for EM * Minus Maintenance	Production Req. for EM + ΔBW** Minus MaintenanceTotal Reg for EM		Total Req. for EM +ΔBW	Fisher (1998) Available	NRC (1994) Total
			mg	/bird/day			
Crude Protein	5852		13502		19354		19500
Arginine	314	753	708	1067	1022	803	1110
Histidine	74					302	205
Isoleucine	159	689	669	848	828	598	850
Leucine	205					988	1250
Lysine	168	710	721	878	889	893	765
Methionine	91	340	345	431	436	372	450
Cystine	31	395	437	426	468		
Met + Cys						621	700
Phenylalanine	224		475		699		
Tyrosine	66						
Phe + Tyr						1032	1112
Threonine	243	399	370	642	613	558	720
Tryptophan	21	191	222	212	243	186	190
Valine	199	575	587	774	786	693	750
Non-essential AA	4057		7690		11747		
Essential: Non Essential AA Ratio	31:69		43:57		39:61		

Broiler Breeder Ideal AA Profile

AA	RATIO
LYS	100
ARG	117
MET	53
CYS	53
ILE	97
VAL	92
PHE	78
TRP	29
THR	73

Digestible Isoleucine Requirement for Fertility

Requirements for Fertility

Isoleucine

Lysine

Requirements for Fertility (3 trials combined)

Isoleucine

Lysine

Effect of Days after Al on Fertility Isoleucine Lysine

Are these effects due to more suitable environment for sperm storage?
Both Isoleucine and Lysine are ketogenic

Colostomized broiler breeder hen showing the presence of egg in the urine-collection bag immediately after egg-laying

Urine pH of Colostomized Breeders

Low Isoleucine Diet 300 mg/bird/d

Standard Isoleucine Diet 800 mg/bird/d

Excess Protein and Heat Stress

- Excess protein must be metabolized, this requires energy, which generates heat. This aggravates heat stress under hot conditions
- Under hot conditions:
 - Body temp will rise by 1°C 1 to 3hrs after feeding
 - Reduce excess crude protein
 - Utilize highly digestible ingredients
 - Utilize additional fat to meet Energy levels (replace some of the grain with fat- beware of pellet/crumble quality)

Aviagen Breeder Trial

- Ross 308 Parent Stock
- Crude protein levels tested
- 15.5% vs 17%
- Dig Met+Cys identical in both diets
- Recorded all aspects of performance

Feed Allocation

Average of High — Average of Std

Hen Day Egg Production

Weekly Egg Weights

Temperature (weekly averages)

Performance Summary

	TE/HH	HE/HH	% HE	Fer- tility %	HOF %	HOS %	Chick Weight g	Mor- tality %	g CP/ dozen HE
Std	157.8	148.5	94.1	92.6	92.1	85.3	40.71	3.93	434
High	158.8	148.5	93.5	92.9	91.8	85.3	40.86	4.54	478

Protein requirements

- Recent research suggests that the accepted levels of dietary protein may be higher than needed (Coon et al., 2006)
- Impact of overfeeding may include:
 - Alteration of pH and impact on fertility
 - Increased physiological load on kidneys
 - Excessive egg size for hatchery equipment
 - Possible impact on bone quality
 - Increased cost

Fractional synthesis rate

- Fractional synthesis rate (FSR) is the proportion of whole body protein that is synthesized each day
- FSR of breast muscle in layer is ~15%
- FSR of breast muscle in breeder is ~32%, but declines with egg production
- FSR of liver proteins increases with egg production

Manangi, 2007, Hiramoto, 1989

Fractional degradation rate

 Breeders increase protein degradation rate in breast muscle 160% at sexual maturity and decrease the fractional growth rate 5.3X

Protein synthesis and degradation rates in pectoralis major muscle and liver of broiler breeder hens before and after sexual maturity

	Muscle -	Muscle -	Muscle -	Liver	
	<i>k_s</i> , %/d	<i>k_g</i> , %/d	<i>k_d</i> , %/d	<i>k_s</i> , %/d	
22 wk	38.96 ^a	18.63 ^a	20.32 ^a	79.65 ^a	
26 wk	32.83 ^a	3.52 ^b	32.52 ^b	106.36 ^b	
PSEM	2.99	1.18	1.90	7.79	

^{a-b} Means within a column with no common superscripts differ significantly (P < 0.05) $k_s =$ fractional rate of protein synthesis; $k_g =$ fractional growth rate; $k_d =$ fractional degradation rate

Manangi et al., 2007 (PSA)

Methods

- 15 Cobb 500 broiler breeders
 - 6 hens euthanized after 2nd egg (trt. 1)
 - 6 hens euthanized after 3rd egg (trt. 2)
 - 3 control hens with no isotope enrichment

<					
Wk 23:	Wk 24	Wk25	Wk 26:	Wk 27	
Daily oral dose			Approximate age		
of ¹⁵ N-lysine			of 1st egg; begin	of 1st egg; begin	
begins			Daily oral dose of		
2			¹³ C-lysine :stop ¹⁵ N-lysine		

Note: no significant difference in the # of days of ¹⁵N enrichment (P<0.05)

Breast muscle

Conclusions

- The increase in ¹⁵N-lysine in the egg suggests that breast muscle may be a major source of amino acids for egg formation
- The role of dietary amino acids in egg formation may be limited during the transition into sexual maturity

Applications

- Changes in strains, body weight and composition, egg production, egg size and composition and environmental temperature can be accounted for using a ME Requirement model
- Accurate amino acid requirements can be determined for breeders of any strain or size and in any stage of production
- Nutritional effects on fertility need to be examined and understood
- Don't overfeed protein in hot temperatures

Acknowledgments

The authors are indebted to Cobb-Vantress and Heartland Ajinomoto for financially supporting this research. Acknowledgments

Marc de Beer Aviagen, Inc.

Acknowledgements

- Dr. Meg Manangi (Novus)
- Dr. Nilva Sakomura / UNESP Braz•il
- Ricardo Ekmay (Univ. of Arkansas)
- Catalina Salas (Univ. of Arkansas)
- Judy England (Univ. of Arkansas)