

MCQs for Final Exam (Math-244: Linear algebra, Semester-2, 1441H)

Question 1:

Model-I: If $AB + A - I = 0$ where $B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, then $A^{-1} =$

(a) $\begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix}$ (b) $\begin{bmatrix} -3 & -3 \\ -1 & -5 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & -3 \\ -1 & -3 \end{bmatrix}$

Model-II: If $AB - A - I = 0$ where $B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, then $A^{-1} =$

(a). $\begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix}$ (b). $\begin{bmatrix} -3 & -3 \\ -1 & -5 \end{bmatrix}$ (c). $\begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$ (d). $\begin{bmatrix} -1 & -3 \\ -1 & -3 \end{bmatrix}$

Model-III: If $AB + A + I = 0$ where $B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, then $A^{-1} =$

(a). $\begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix}$ (b). $\begin{bmatrix} -3 & -3 \\ -1 & -5 \end{bmatrix}$ (c). $\begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$ (d). $\begin{bmatrix} -1 & -3 \\ -1 & -3 \end{bmatrix}$

Model-IV: If $AB - A + I = 0$ where $B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, then $A^{-1} =$

(a) $\begin{bmatrix} 3 & 3 \\ 1 & 5 \end{bmatrix}$ (b) $\begin{bmatrix} -3 & -3 \\ -1 & -5 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & -3 \\ -1 & -3 \end{bmatrix}$

Model-V: If $AB + 2A - I = 0$ where $B = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$, then $A^{-1} =$

(a) $\begin{bmatrix} 4 & 3 \\ 1 & 6 \end{bmatrix}$ (b) $\begin{bmatrix} -3 & -3 \\ -1 & -5 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} -1 & -3 \\ -1 & -3 \end{bmatrix}$

Question 2:

Model-I: The inverse of $B = \begin{bmatrix} 1 & 0 & 1 \\ 5 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$ is:

(a). $\begin{bmatrix} 1 & 0 & 1 \\ -5 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ (b). $\begin{bmatrix} 1 & 0 & 1 \\ -5 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ (c). $\begin{bmatrix} 1 & 0 & -1 \\ -5 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (d). $\begin{bmatrix} 1 & 0 & -1 \\ -5 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Model-II: The inverse of $B = \begin{bmatrix} 1 & 0 & 1 \\ 4 & 1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ is:

(a) $\begin{bmatrix} 1 & 0 & -1 \\ -4 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & -1 \\ -4 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 1 \\ -4 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 1 \\ -4 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$

Model-III: The inverse of $B = \begin{bmatrix} 1 & 0 & 1 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ is:

(a) $\begin{bmatrix} 1 & 0 & -1 \\ -3 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & -1 \\ -3 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 1 \\ -3 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ (d)

$$\begin{bmatrix} 1 & 0 & 1 \\ -3 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

Model-IV: The inverse of $B = \begin{bmatrix} 1 & 0 & 1 \\ 6 & 1 & 5 \\ 0 & 0 & 1 \end{bmatrix}$ is:

(a) $\begin{bmatrix} 1 & 0 & 1 \\ -6 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & -1 \\ -6 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 1 \\ -6 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & -1 \\ -6 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Model-V: The inverse of $B = \begin{bmatrix} 1 & 0 & 1 \\ 7 & 1 & 6 \\ 0 & 0 & 1 \end{bmatrix}$ is:

(a) $\begin{bmatrix} 1 & 0 & 1 \\ -7 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & -1 \\ -7 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 1 \\ -7 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & -1 \\ -7 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$

Question 3:

Model-I: Which of the following matrices is an elementary matrix?

(a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Model-II: Which of the following matrices is an elementary matrix?

(a) $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 3 \\ 0 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Model-III: Which of the following matrices is an elementary matrix?

(a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 3 \\ 0 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Model-IV: Which of the following matrices is an elementary matrix?

(a) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 3 \\ 0 & 3 \end{bmatrix}$ (c) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Model-V: Which of the following matrices is an elementary matrix?

(a) $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

Question 4:

Model-I: The matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & m & 5 \\ 1 & 2 & m \end{pmatrix}$ is invertible if and only if:

(a) $m \in \{-1, 1\}$ (b) $m \notin \{-1, 3\}$ (c) $m \notin \{0, 2\}$ (d) $m \in \{1, 2\}$

Model-II: The matrix $\begin{pmatrix} 1 & 1 & 1 \\ 1 & m & 2 \\ 1 & 10 & m \end{pmatrix}$ is invertible if and only if:

(a) $m \in \{-2, 4\}$ (b) $m \notin \{-2, 2\}$ (c) $m \in \{-2, 2\}$ (d) $m \notin \{-2, 4\}$

Model-III: The matrix $\begin{pmatrix} 1 & 2 & 2 \\ 1 & m & 3 \\ 1 & 3 & m \end{pmatrix}$ is invertible if and only if:

(a) $m \in \{1, 3\}$ (b) $m \notin \{1, 3\}$ (c) $m \in \{-1, 3\}$ (d) $m \notin \{-1, 3\}$

Model-IV: The matrix $\begin{pmatrix} 1 & 2 & 2 \\ 1 & m & 4 \\ 1 & 4 & m \end{pmatrix}$ is invertible if and only if:

(a) $m \in \{0, 2\}$ (b) $m \in \{0, -4\}$ (c) $m \notin \{0, 4\}$ (d) $m \notin \{0, -4\}$

Model-V: The matrix $\begin{pmatrix} 1 & 2 & -1 \\ 1 & m & m^2 \\ 1 & 2 & m^3 \end{pmatrix}$ is invertible if and only if:

(a) $m \in \{-1, 2\}$ (b) $m \notin \{-1, 2\}$ (c) $m \in \{-1, 1\}$ (d) $m \notin \{-1, 1\}$

Question 5:

Model-I: The determinant of the matrix $\begin{pmatrix} a & a & b & 0 \\ a & a & 0 & b \\ d & 0 & a & a \\ 0 & d & a & a \end{pmatrix}$ is equal to:

(a) $bd(bd-4a^2)$ (b) $bd(bd-3a^2)$ (c) $bd(bd-2a^2)$ (d) $bd(bd-a^2)$

Model-II: The determinant of the following matrix is equal to:

$$\begin{pmatrix} b & b & a & 0 \\ b & b & 0 & a \\ d & 0 & b & b \\ 0 & d & b & b \end{pmatrix}$$

(a) $ad(ad-b^2)$ (b) $ad(ad-2b^2)$ (c) $ad(ad-3b^2)$ (d) $ad(ad-4b^2)$

$$\begin{pmatrix} a & a & d & 0 \\ a & a & 0 & d \\ b & 0 & a & a \\ 0 & b & a & a \end{pmatrix}$$

Model-III: The determinant of the matrix

Model-IV: The determinant of the matrix

$$\begin{pmatrix} d & d & b & 0 \\ d & d & 0 & b \\ a & 0 & d & d \\ 0 & a & d & d \end{pmatrix}$$

(a) $ba(ba-4d^2)$ (b) $ba(ba-2d^2)$ (c) $ba(ba-3d^2)$ (d) $ba(ba-d^2)$

$$\begin{pmatrix} a & a & b & 0 \\ a & a & 0 & b \\ 0 & d & a & a \\ d & 0 & a & a \end{pmatrix}$$

Model-V: The determinant of the matrix

(a) $bd(bd-a^2)$ (b) $bd(a^2 - bd)$ (c) $bd(4a^2 - bd)$ (d) $bd(bd-4a^2)$

Question 6:

Model-I: Let A and B be two matrices of order 3 such that $|A| = 2|B| = 4$. Then, $|2A^T B^3 \text{adj}(A^2)|$ is equal to:

(a) 4^8 (b) 4^4 (c) 4^6 (d) 4^{10}

Model-II: Let A and B be two matrices of order 3 such that $|A|=3|B|=6$. Then, $|3A^T B^3 \text{adj}(A^3)|$ is equal to:

(a) 6^4 (b) 6^6 (c) 6^8 (d) 6^{10}

Model-III: Let A and B be two matrices of order 3 such that $|A|=-3|B|=3$. Then $|A^T B^3 \text{adj}(A^2) B^{-1}|$ is equal to:

(a) 3^3 (b) 3^4 (c) 3^5 (d) 3^6

Model-IV: Let A and B be two matrices of order 2 such that $|A|=2|B|=6$. Then, $|2A^{-1} B^2 \text{adj}(A^2) A^T|$ is equal to:

(a) 2^4 (b) 3^4 (c) 6^{-4} (d) 6^4

Model-V: Let A and B be two matrices of order 4 such that $|B|=-2|A|=1$. Then, $|2A^T B^3 \text{adj}(A^3) B^{-1}|$ is equal to:

(a) 2^{-2} (b) 2^{-4} (c) 2^{-6} (d) 2^{-8}

Question 7:

Model-I: Let $\begin{bmatrix} 2 & 1 & 1 & -6\alpha \\ \alpha & 3 & 2 & 2\alpha \\ 2 & 1 & \alpha+1 & 4 \end{bmatrix}$ be the augmented matrix of a linear system. The set of

values of α for which the system has a unique solution is:

(a) $\mathbb{R} - \{0,6\}$ (b) $\{0,6\}$ (c) $\{0,-1\}$ (d) $\mathbb{R} - \{0,-1\}$

Model-II: Let $\begin{bmatrix} 1 & 1 & -1 & 1 \\ 2 & 3 & \alpha & 3 \\ 1 & \alpha & 3 & 2 \end{bmatrix}$ be the augmented matrix of a linear system. The set of values

of α for which the system has a unique solution is:

(a) $\{-3,2\}$ (b) $\mathbb{R} - \{-3,2\}$ (c) $\{3,-2\}$ (d) ϕ

Model-III: Let $\begin{bmatrix} 1 & 2 & -3 & 4 \\ 3 & -1 & 5 & 2 \\ 4 & 1 & \alpha^2 - 14 & \alpha + 2 \end{bmatrix}$ be the augmented matrix of a linear system. The set

of values of α for which the system has a unique solution is:

(a) $\{-\sqrt{14}, \sqrt{14}, -2\}$ (b) $\{-4, 4\}$ (c) $\mathbb{R} - \{-4, 4\}$ (d) \emptyset

Model-IV: Let $\begin{bmatrix} 1 & 1 & -1 & 3 \\ 1 & -1 & 3 & 4 \\ 1 & 1 & \alpha^2 - 10 & \alpha \end{bmatrix}$ be the augmented matrix of a linear system. The set of

values of α for which the system has a unique solution is:

(a) \emptyset (b) $\{-3, 3\}$ (c) $\{-\sqrt{10}, 0, \sqrt{10}\}$ (d) $\mathbb{R} - \{-3, 3\}$

Model-V: Let $\begin{bmatrix} \alpha & 0 & \beta & 2 \\ \alpha & \alpha & 4 & 4 \\ 0 & \alpha & 2 & \beta \end{bmatrix}$ be the augmented matrix of a linear system. The values of

α and β for which the system has a unique solution is

(a) $\alpha \neq 0$ and $\beta \neq 2$ (b) $\alpha = 0$ and $\beta = 2$ (c) $\alpha \neq 0$ and $\beta = 2$ (d) $\alpha = 0$ and $\beta \neq 2$

Question 8:

Model-I: Let $\begin{bmatrix} a & 1 & 1 & 0 \\ 1 & 1 & -1 & 0 \\ 1 & 1 & a & 0 \end{bmatrix}$ be the augmented matrix of a linear system. The set of values of

a for which the system has nontrivial solutions is:

(a) $\{-1, 1\}$ (b) $\{-1, 0, 1\}$ (c) $\mathbb{R} - \{-1, 0, 1\}$ (d) $\mathbb{R} - \{-1, 1\}$

Model-II: Let $\begin{bmatrix} a & -1 & 0 & 0 \\ -1 & a & -3 & 0 \\ 0 & -1 & a & 0 \end{bmatrix}$ be the augmented matrix of a linear system. The set of

values of a for which the system has nontrivial solutions is:

(a) $\{-1, 0, 1\}$ (b) $\{-2, 0, 2\}$ (c) $\mathbb{R} - \{-2, 0, 2\}$ (d) $\mathbb{R} - \{0\}$

Model-III: Let $\begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & a & -1 & 0 \\ 1 & 1 & a & 0 \end{bmatrix}$ be the augmented matrix of a linear system. The set of values

of a for which the system has nontrivial solutions is:

(a) $\mathbb{R} - \{-1, 0, 1\}$ (b) $\{-1, 0, 1\}$ (c) $\{-1, 0\}$ (d) $\mathbb{R} - \{-1, 0\}$

Model-IV: Let $\begin{bmatrix} 1 & 2 & 1 & 0 \\ 1 & 3 & 7 & 0 \\ 2 & 3 & a^2 & 0 \end{bmatrix}$ be the augmented matrix of a linear system. The set of values

of a for which the system has nontrivial solutions is:

(b) $\mathbb{R} - \{-2, 2\}$ (b) $\{-2, 2\}$ (c) \mathbb{R} (d) \emptyset

Model-V: Let $\begin{bmatrix} 1 & 1 & a & 0 \\ 1 & 1 & b & 0 \\ a & b & 1 & 0 \end{bmatrix}$ be the augmented matrix of a linear system. The condition

satisfied by a and b for which the system has nontrivial solutions is:

(a) $a = b$ (b) $a + b = 0$ (c) $a \neq b$ (d) $ab = 0$

Question 9:

Model-I: Let $\begin{bmatrix} 1 & 0 & 2 & a \\ 2 & 1 & 5 & b \\ 1 & -1 & 1 & c \end{bmatrix}$ be the augmented matrix of a linear system. The condition

satisfied by a , b , and c so that the system is consistent is:

(a) $b + c = 3a$ (b) $a + b + c \neq 0$ (c) $a + b + c = 0$ (d) $b + c - 3a \neq 0$

Model-II: Let $\begin{bmatrix} 1 & 2 & -3 & a \\ 2 & 6 & -11 & b \\ 1 & -2 & 7 & c \end{bmatrix}$ be the augmented matrix of a linear system. The condition

satisfied by a , b , and c so that the system is consistent is:

(a) $b - 2a = c$ (b) $5a = 2b + c$ (c) $b - 2a - c \neq 0$ (d) $2b + c - 5a \neq 0$

Model-III: Let $\begin{bmatrix} 1 & 1 & -2 & a \\ 2 & -1 & -1 & b \\ 4 & 1 & -5 & c \end{bmatrix}$ be the augmented matrix of a linear system. The condition

satisfied by a , b , and c so that the system is consistent is:

(a) $2a+b-c \neq 0$ (b) $b-2a=c$ (c) $2a+b=c$ (d) $2a-b+c \neq 0$

Model-IV: Let $\begin{bmatrix} 1 & -2 & 5 & a \\ 4 & -5 & 8 & b \\ -3 & 3 & -3 & c \end{bmatrix}$ be the augmented matrix of a linear system. The condition

satisfied by a , b , and c so that the system is consistent is:

(a) $b+c-a \neq 0$ (b) $a+b-c \neq 0$ (c) $a+b-c=0$ (d) $b+c=a$

Model-V: Let $\begin{bmatrix} 1 & -1 & 3 & a \\ -2 & 1 & 5 & b \\ -3 & 2 & 2 & c \end{bmatrix}$ be the augmented matrix of a linear system. The condition

satisfied by a , b , and c so that the system is consistent is:

(a) $a-b+c=0$ (b) $a+b+c=0$ (c) $a+c \neq b$ (d) $a+b+c \neq 0$

Question 10:

Model-I: Let $W = \{(x, y, z, 0, 0) ; x, y, z \in \mathbb{R}, 2x - y = 0 \text{ and } x + y - z = 0\}$, then:

(a) $\{(1, 2, 3, 0, 0)\}$ is a basis for W .
 (b) $\{(1, -2, 1, 0, 0)\}$ is a basis for W .
 (c) $\{(1, 0, 1), (1, 2, 0)\}$ is a basis for W .
 (d) $\{(1, 0, 1, 0, 0), (1, 2, 0, 0, 0)\}$ is a basis for W .

Model-II: The set $S = \{2 + 3x, 1 - x + x^2, 1 + x + 3x^2\}$ is a basis for P_2 (the space of polynomials of degree ≤ 2).

If $p \in P_2$ with $[p]_S = (3, 2, -2)$, then:

(a) $p = 6 + 5x - 4x^2$ (b) $p = 4 - 5x - 4x^2$
 (c) $p = 3 + 2x - 4x^2$ (d) $p = 3 + 3x - 4x^2$

Model-III: Let $B = \{v_1, v_2, v_3\}$ be a basis for a vector space V and $C = \{v_1 + 2v_2 - v_3, v_2 + v_3, v_2 - v_3\}$ is a subset of V . Then:

(a) C is a basis for V and ${}_B P_C = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 1 \\ -1 & 1 & -1 \end{bmatrix}$.

(b) C is a basis for V and ${}_B P_C = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$.

(c) C is a basis for V and ${}_B P_C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & -1 \end{bmatrix}$.

(d) C is not a basis for V .

Model-IV: If $A = \begin{bmatrix} 1 & -2 & 0 & 3 & -4 \\ -1 & 1 & 0 & -2 & 3 \end{bmatrix}$, then:

- (a) the set $\{(2, -1, 0, 0, 1), (-1, 1, 0, 1, 0), (0, 0, 1, 0, 0)\}$ is a basis for $\text{Null}(A)$.
- (b) the set $\{(2, -1, 0, 0, 1), (-1, 1, 0, 1, 0), (10, 0, 1, 1, 1)\}$ is a basis for $\text{Null}(A)$.
- (c) the set $\{(2, -1, 0, 1), (-1, 1, 0, 1), (1, 0, 0, 1)\}$ is a basis for $\text{Null}(A)$.
- (d) Nullity $(A) = 2$.

Model-V: Let V be a vector space of dimension 7 and S a basis for V . If $G = \{v_1, v_2, v_3, v_4, v_5\}$ is linearly independent subset of V , where $v_4 \notin S$, then:

- (a) Any nonempty subset of S is linearly independent.
- (b) The set $S \cup G$ is linearly independent.
- (c) The set $S \cap G$ generates V .
- (d) the set G is a basis for V .

Question 11:

Model-I: Let $B = \{v_1, v_2, v_3\}$ is a basis for a subspace W of \mathbb{R}^4 and $C = \{(1,0,0,1),$

$(-1,1,0,1), (0,0,1,1)\}$ is another basis for W . If ${}_C P_B = \begin{bmatrix} 1 & 2 & 1 \\ -1 & 1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ (the transition matrix from B to C), then:

- (a) $v_3 = (0,1,1,3)$
- (b) $(-1,1,1,2) \notin W$
- (c) $(1,1,0,2) \in W$
- (d) the set C is not linearly independent.

Model-II: If $G = \{(a, b, 2a+b, 2b, a, 0) : a \text{ and } b \text{ are real numbers}\}$ is a subspace of \mathbb{R}^6 , then:

- (a) the set $\{(1,0,2,0,1,0), (0,1,1,2,0,0)\}$ is a basis for G .
- (b) the set $\{(1,0,2,0,1,0), (1, 0, 0, 0, -1, 1)\}$ spans G .
- (c) $(1, -1, 1, -2, 1, 0) \notin G$.
- (d) G is not a linear subspace of \mathbb{R}^6 .

Model-III: Let $A = [v_1 \ v_2 \ v_3 \ v_4 \ v_5 \ v_6] = \begin{bmatrix} 1 & 2 & 1 & 2 & 0 & 1 \\ -1 & -2 & 0 & -1 & 1 & 1 \\ 3 & 6 & 1 & 4 & -2 & 0 \end{bmatrix}$. Then:

- (a) The set $\{v_1, v_3, v_6\}$ spans \mathbb{R}^3 .
- (b) The set $\{v_1, v_3, v_4\}$ spans \mathbb{R}^3 .
- (c) $\text{Rank}(A) = 4$.
- (d) $\text{Nullity}(A) = 2$.

Model-IV: If $A = \begin{bmatrix} 1 & -2 & 0 & 3 & -4 \\ -1 & 1 & 0 & -2 & 3 \end{bmatrix}$, then:

- (a) the set $\{(2, -1, 0, 0, 1), (-1, 1, 0, 1, 0), (0, 0, 1, 0, 0)\}$ is a basis for $\text{Null}(A)$.
- (b) the set $\{(2, -1, 0, 0, 1), (-1, 1, 0, 1, 0), (10, 0, 1, 1)\}$ is a basis for $\text{Null}(A)$.

(c) the set $\{(2, -1, 0, 1), (-1, 1, 0, 1), (1, 0, 0, 1)\}$ is a basis for $\text{Null}(A)$.

(d) $\text{Nullity}(A) = 2$.

Model-V: Let W be a subspace of \mathbb{R}^3 spanned by the set $B = \{(3, -2, 1), (2, -3, -1)\}$. If $C = \{(1, -1, 0), (1, 0, 1)\}$ is a basis for W , then:

$$(a) \quad {}_C P_B = \begin{bmatrix} 2 & 3 \\ 1 & -1 \end{bmatrix}$$

$$(b) \quad {}_C P_B = \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}$$

$$(c) \quad {}_B P_C = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

(d) B is not a linearly independent set.

Question 12:

Model-I: Let V be a vector space of dimension 4 and $u, w \in V$. If $S = \{u, w, u - w, 2u + 3w\}$, then:

(a) S is a linearly dependent set.

(b) S is a linearly independent set.

(c) S spans V .

(d) S contains a basis for V .

Model-II: Let A be a 5×8 matrix. If $\text{rank}(A) = 3$, then:

(a) $\text{Nullity}(A^T) = 2$.

(b) $\text{Nullity}(A) = 2$.

(c) $\text{rank}(A^T) = 5$.

(d) $\dim(\text{row}(A)) = 5$.

Model-III: Determine which of the following statements is true:

- (a) $W = \{(x - y, 2z, 0) : x, y, z \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 and $(1,1,0) \in W$.
- (b) $G = \{(x, 2x + y, x) : x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 and $(1,0,2) \in G$.
- (c) the set $\{(x, y, y + 2) : x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .
- (d) the set $\{(x, y, x + y, xy) : x, y \in \mathbb{R}\}$ is a subspace of \mathbb{R}^3 .

Model-IV: If W is the subspace of \mathbb{R}^4 spanned by the set $S = \{(1,1,0,1), (-1,0,0,1), (0,0,1,1)\}$, then:

- (a) $(0,1,0,2) \in W$.
- (b) $(1,1,1,1) \in W$.
- (c) $(0,1,0,2) \notin W$.
- (d) S is linearly dependent set.

Model-V: If $A = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \\ R_6 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 2 & -2 \\ 3 & 0 & 1 \\ 1 & 2 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$, then:

- (a) The set $\{R_1, R_3, R_6\}$ is linearly independent.
- (b) The set $\{R_1, R_2, R_6\}$ is linearly independent.
- (c) The set $\{R_1, R_2, R_3\}$ is linearly independent.
- (d) Nullity (A) = 4.

Question 13:

Model-I: If \mathbf{u} and \mathbf{v} are vectors in a real inner product space $(V, \langle \cdot, \cdot \rangle)$ with $\|\mathbf{u}\| = 2$ and $\|\mathbf{v}\| = 3$, which of the following statements is correct?

- (a). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ is less than 5.
- (b). The number $|\langle \mathbf{u}, \mathbf{v} \rangle|$ is equal to 6.

(c). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ is greater than or equal to 5.

(d). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ is less than or equal to 6.

Model-II: If \mathbf{u} and \mathbf{v} are vectors in a real inner product space $(\mathbf{V}, \langle \cdot, \cdot \rangle)$ with $\|\mathbf{u}\| = 1$ and $\|\mathbf{v}\| = 2$, which of the following statements is correct?

(a). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ lies between 1 and 2

(b). The number $|\langle \mathbf{u}, \mathbf{v} \rangle|$ is less than or equal to 2.

(c). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ is less than 1.

(d). The number $|\langle \mathbf{u}, \mathbf{v} \rangle|$ is greater than or equal to $\frac{1}{2}$.

Model-III: If \mathbf{u} and \mathbf{v} are linearly dependent vectors in a real inner product space $(\mathbf{V}, \langle \cdot, \cdot \rangle)$ with $\|\mathbf{u}\| = 3$ and $\|\mathbf{v}\| = 2$, which of the following statements is correct?

(a). The number $|\langle \mathbf{u}, \mathbf{v} \rangle|$ is equal to 6.

(b). The number $2 \langle \mathbf{u}, \mathbf{v} \rangle$ is greater than 6.

(c). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ always lie between 0 and 6.

(d). The number $|\langle \mathbf{u}, \mathbf{v} \rangle|$ strictly less than 6.

Model-IV: If \mathbf{u} and \mathbf{v} are linearly independent vectors in a real inner product space $(\mathbf{V}, \langle \cdot, \cdot \rangle)$ with $\|\mathbf{u}\| = 3$ and $\|\mathbf{v}\| = \frac{1}{3}$, which of the following statements is correct?

(a). The number $|\langle \mathbf{u}, \mathbf{v} \rangle|$ is strictly less than 1.

(b). The number $|\langle \mathbf{u}, \mathbf{v} \rangle|$ is equal to $\frac{1}{3}$.

(c). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ is greater than or equal to $\frac{1}{3}$.

(d). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ is equal to 1.

Model-V: If \mathbf{u} and \mathbf{v} are vectors in a real inner product space $(\mathbf{V}, \langle \cdot, \cdot \rangle)$ with $\|\mathbf{u}\| = 4$ and $\|\mathbf{v}\| = 3$, which of the following statements is correct?

(a). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ is always less than 7.

(b). The number $|\langle \mathbf{u}, \mathbf{v} \rangle|$ is equal to 12.

(c). The number $\langle \mathbf{u}, \mathbf{v} \rangle$ is cannot be 12.

(d). The number $| \langle \mathbf{u}, \mathbf{v} \rangle |$ is less than or equal to 12.

Question 14:

Model-I: Let $\mathbf{B} = \{v_1, v_2, v_3\}$ be an orthogonal set of non-zero vectors in the Euclidean inner product space \mathbb{R}^3 . Which of the following statements is correct?

- (a). \mathbf{B} is linearly dependent.
- (b). $\text{span}(\mathbf{B}) = \mathbb{R}^3$.
- (c). \mathbf{B} is orthonormal.
- (d). \mathbf{B} is not a basis for \mathbb{R}^3 .

Model-II: Let $\mathbf{B} = \{v_1, v_2, v_3\}$ be an orthogonal set of non-zero vectors in the Euclidean inner product space \mathbb{R}^3 . Which of the following statements is correct?

- (a). \mathbf{B} is linearly independent.
- (b). $\text{span}(\mathbf{B})$ is a proper subspace of \mathbb{R}^3 .
- (c). \mathbf{B} is an orthonormal basis for $\text{span}(\mathbf{B})$.
- (d). \mathbf{B} is linearly dependent.

Model-III: Let $\mathbf{B} = \{v_1, v_2, v_3\}$ be an orthogonal set of non-zero vectors in the Euclidean inner product space \mathbb{R}^3 . Which of the following statements is correct?

- (a). \mathbf{B} is a basis for \mathbb{R}^3 .
- (b). $\text{span}(\mathbf{B})$ is a proper subspace of \mathbb{R}^3 .
- (c). \mathbf{B} is normal.
- (d). \mathbf{B} is linearly dependent.

Model-IV: Let $\mathbf{B} = \{v_1, v_2, v_3\}$ be an orthogonal set of non-zero vectors in the Euclidean inner product space \mathbb{R}^3 . Which of the following statements is correct?

- (a). \mathbf{B} is an orthonormal basis for \mathbb{R}^3 .
- (b). $\text{span}(\mathbf{B})$ is a proper subspace of \mathbb{R}^3 .

(c). \mathbf{B} is an orthonormal basis for $\text{span}(\mathbf{B})$.

(d). $\dim(\text{span}(\mathbf{B})) = 3$.

Model-V: Let $\mathbf{B} = \{v_1, v_2, v_3\}$ be an orthogonal set of non-zero vectors in the Euclidean inner product space \mathbb{R}^3 . Which of the following statements is correct?

(a). \mathbf{B} is not an orthonormal basis for \mathbb{R}^3 .

(b). $\text{span}(\mathbf{B})$ is a proper subspace of \mathbb{R}^3 .

(c). $\dim(\text{span}(\mathbf{B})) \geq 3$.

(d). $\dim(\text{span}(\mathbf{B})) \neq 3$.

Question 15:

Model-I: If the Gram-Schmidt orthogonalization algorithm is applied on the set $\{v_1 := (1,1,1,0), v_2 := (0,1,0,1)\}$ of vectors in the Euclidean inner product space \mathbb{R}^4 , which of the following sets is obtained?

(a). $\left\{(-1,1,1,0), \left(\frac{1}{3}, 0, \frac{1}{3}, 1\right)\right\}$.

(b). $\left\{(1,1,1,0), \left(-\frac{1}{3}, \frac{2}{3}, -\frac{1}{3}, 1\right)\right\}$.

(c). $\{(0,1,1,0), (-1,0,0,1)\}$.

(d). $\{(0,1,0,1), (-1,1, -1,0)\}$.

Model-II: If the Gram-Schmidt orthogonalization algorithm is applied on the set $\{v_1 := (0,1,0,1), v_2 := (1,1,1,0)\}$ of vectors in the Euclidean inner product space \mathbb{R}^4 , which of the following sets is obtained?

(a). $\left\{(1, \frac{1}{2}, 1, -\frac{1}{2}), (0,1,0,1)\right\}$.

(b). $\left\{(1,1,1,0), \left(1, \frac{1}{2}, 1, -\frac{1}{2}\right)\right\}$.

(c). $\left\{(1,1,1,0), \left(1, \frac{1}{2}, -\frac{1}{2}, 1\right)\right\}$.

(d). $\left\{ \left(-\frac{1}{3}, \frac{2}{3}, -\frac{1}{3}, 1 \right), \left(1, \frac{1}{2}, 1, -\frac{1}{2} \right) \right\}.$

Model-III: If the Gram-Schmidt orthogonalization algorithm is applied on the set $\{v_1 := (1,0,-1,1), v_2 := (0,-1,1,0)\}$ of vectors in the Euclidean inner product space \mathbb{R}^4 , which of the following sets is obtained?

(a). $\left\{ (1,0,-1,1), (1, -\frac{1}{2}, -\frac{1}{2}, 1) \right\}.$

(b). $\left\{ (0, \frac{2}{3}, -\frac{1}{3}, \frac{1}{3}), (1,0,-1,1) \right\}.$

(c). $\left\{ (1,0,-1,1), (\frac{1}{3}, -1, \frac{2}{3}, \frac{1}{3}) \right\}.$

(d). $\left\{ (1,0,-1,1), (-1, \frac{1}{2}, \frac{1}{2}, -1) \right\}$

Model-IV: If the Gram-Schmidt orthogonalization algorithm is applied on the set $\{v_1 := (0,-1,1,0), v_2 := (1,0,-1,1)\}$ of vectors in the Euclidean inner product space \mathbb{R}^4 , which of the following sets is obtained?

(a). $\left\{ (0,1,-1,0), (-1, -\frac{1}{2}, -\frac{1}{2}, \frac{3}{2}) \right\}.$

(b). $\left\{ (1, -1, 0, 0), (0,0, \frac{1}{2}, -\frac{1}{2}) \right\}.$

(c). $\left\{ \left(1,1, \frac{2}{3}, 0 \right), (1, -1, 0, 0) \right\}.$

(d). $\left\{ (0, -1, 1, 0), (1, -\frac{1}{2}, -\frac{1}{2}, 1) \right\}.$

Model-V: If the Gram-Schmidt orthogonalization algorithm is applied on the set $\{v_1 := (1,0,0,1), v_2 := (0,1,1,1)\}$ of vectors in the Euclidean inner product space \mathbb{R}^4 , which of the following sets is obtained?

(a). $\left\{ (1,0,0,1), (-\frac{1}{2}, -1, -1, \frac{1}{2}) \right\}.$

(b). $\left\{ \left(-\frac{1}{2}, 1, 1, \frac{1}{2} \right), (1,0,0,1) \right\}.$

(c). $\left\{ (1,1,1,0), (-\frac{1}{2}, -1, 1, \frac{1}{2}) \right\}.$

(d). $\left\{ \left(\frac{1}{3}, 1, \frac{2}{3}, -\frac{1}{3} \right), (0,1,1,1) \right\}.$

Question 16:

Model-I: Let $\alpha \in R$ and $T: R^3 \rightarrow R^2$; $T(x, y, z) = (x + y - 3z, z + y + \alpha^2 - 3\alpha + 2)$ be a function. Then the value(s) of α such that T is **not** a linear transformation is (are):

a) $\alpha = 1$ b) $\alpha = 2$ c) $\alpha \in \{1, 2\}$ d) $\alpha \in R - \{1, 2\}$

Model-II: Let $\alpha \in R$ and $T: R^3 \rightarrow R^2$; $T(x, y, z) = (x + y - 3z, z + y + \alpha^2 + 3\alpha + 2)$ be a function. Then the value (s) of α such that T is **not** a linear transformation is (are):

a) $\alpha = -1$ b) $\alpha = -2$ c) $\alpha \in \{-1, -2\}$ d) $\alpha \in R - \{-1, -2\}$

Model-III: Let $\alpha \in R$ and $T: R^3 \rightarrow R^2$; $T(x, y, z) = (x + y - 3z, z + y + \alpha^2 - 1)$ be a function. Then the value (s) of α such that T is **not** a linear transformation is (are):

a) $\alpha = -1$ b) $\alpha = 1$ c) $\alpha \in \{-1, 1\}$ d) $\alpha \in R - \{-1, +1\}$

Model-IV: Let $\alpha \in R$ and $T: R^3 \rightarrow R^2$; $T(x, y, z) = (x + y - 3z, z + y + \alpha^2 + 5\alpha + 6)$ be a function. Then the value (s) of α such that T is **not** a linear transformation is (are):

a) $\alpha = -2$ b) $\alpha = -3$ c) $\alpha \in \{-2, -3\}$ d) $\alpha \in R - \{-2, -3\}$

Model-V: Let $\alpha \in R$ and $T: R^3 \rightarrow R^2$; $T(x, y, z) = (x + y - 3z, z + y + \alpha^2 + 5\alpha + 4)$ be a function. Then the value (s) of α such that T is **not** a linear transformation is (are):

a) $\alpha = -1$ b) $\alpha = -4$ c) $\alpha \in \{-1, -4\}$ d) $\alpha \in R - \{-1, -4\}$

Question 17:

Model-I: Let $T: R^3 \rightarrow R^2$; $T(x, y, z) = (x + y, y - z)$ be a linear transformation. Then the standard matrix of T with respect to the natural bases is:

a) $\begin{pmatrix} -1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ b) $\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ c) $\begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$ d) $\begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$

Model-II: Let $T: R^3 \rightarrow R^2$; $T(x, y, z) = (x - y, y + z)$ be a linear transformation. Then the standard matrix of T with respect to the natural bases is:

$$a) \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \quad b) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \quad c) \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \quad d) \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$$

Model-III: Let $T: R^3 \rightarrow R^2$; $T(x, y, z) = (-x + y, y - z)$ be a linear transformation. Then the standard matrix of T with respect to the natural bases is:

$$a) \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \quad b) \begin{pmatrix} -1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \quad c) \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \quad d) \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$$

Model-IV: Let $T: R^3 \rightarrow R^2$; $T(x, y, z) = (x - y, y - z)$ be a linear transformation, then the standard matrix of T with respect to the natural bases is:

$$a) \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \quad b) \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \quad c) \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \quad d) \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \end{pmatrix}$$

Model-V: Let $T: R^3 \rightarrow R^2$; $T(x, y, z) = (x - y, -y + z)$ be a linear transformation. Then the standard matrix of T with respect to the natural bases is:

$$a) \begin{pmatrix} -1 & -1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \quad b) \begin{pmatrix} 1 & -1 & 0 \\ 0 & -1 & 1 \end{pmatrix} \quad c) \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix} \quad d) \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & -1 \end{pmatrix}$$

Question 18:

Model-I: If $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & x & 0 \end{bmatrix}$, then the value of x which makes the vector $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ an eigenvector of A is:

a) $x = 0$ b) $x = 1$ c) $x = 2$ d) $x = -1$

Model-II: If $B = \begin{bmatrix} x & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$, then the value of x which makes the vector $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ an eigenvector of B is:

a) $x = -1$ b) $x = 0$ c) $x = 1$ d) $x = 2$

Model-III: If $A = \begin{bmatrix} x & 1 & 1 \\ 1 & 1 & -1 \\ -2 & 1 & 2 \end{bmatrix}$, then the value of x which makes the vector $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ an eigenvector of A is:

a) $x = 1$ b) $x = 0$ c) $x = -1$ d) $x = 2$

Model-IV: If $B = \begin{bmatrix} x & 0 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & -3 \end{bmatrix}$, then the value of x which makes the vector $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ an eigenvector of B is:

a) $x = 1$ b) $x = 0$ c) $x = -2$ d) $x = -1$

Model-V: If $A = \begin{bmatrix} x & -2 & 1 \\ 1 & -1 & 2 \\ 1 & -1 & -2 \end{bmatrix}$, then the value of x which makes the vector $\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$ an eigenvector of A is:

a) $x = 0$ b) $x = 2$ c) $x = -1$ d) $x = 1$

Question 19:

Model-I: If $B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, then the eigenvalues of B are:

a) 1, 2, 3 b) 1, 2 c) 0, 1, 2 d) 2, 3

Model-II: If $A = \begin{bmatrix} 3 & 0 & -1 \\ 2 & 4 & 2 \\ -1 & 0 & 3 \end{bmatrix}$, then the eigenvalues of A are:

a) 2, 3 b) 2, -1 c) 2, 4 d) 3, 4

Model-III: If $B = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$, then the eigenvalues of B are:

a) -1, 1, 2 b) 1, 2 c) -1, 2 d) -1, 1, -2

Model-IV: If $A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}$, then the eigenvalues of A are:

a) 0, 1, 2 b) 0, 1, 3 c) 1, 2 d) 0, 3

Model-V: If $B = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -2 & 0 \\ 1 & 1 & 3 \end{bmatrix}$, then the eigenvalues of B are:

a) 0, 1, 2 b) 0, 2 c) 1, 2 d) -2, 1, 3

Question 20:

Model-I: If A is an $n \times n$ matrix such that $A^2 = A$. Then, the eigenvalues of A are:

a) 0, -1 b) 1, n c) 0, 1 d) -1, 1

Model-II: If $v = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ is an eigenvector of the matrix B with respect to the eigenvalue -1, then $B^3 v$ is equal to:

a) $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ b) $\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ c) $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ d) $\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$

Model-III: If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A with respect to the eigenvalue 1 and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is an eigenvector of A with respect to the eigenvalue -1, then A is equal to:

a) $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$

Model-IV: If $v = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ is an eigenvector of the matrix B with respect to the eigenvalue -2, then $B^2 v$ is equal to:

a) $\begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$ b) $\begin{bmatrix} -2 \\ 2 \\ -2 \end{bmatrix}$ c) $\begin{bmatrix} 2 \\ -2 \\ 2 \end{bmatrix}$ d) $\begin{bmatrix} 4 \\ -4 \\ 4 \end{bmatrix}$

Model-V: If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of A with respect to the eigenvalue -1 and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is an eigenvector of A with respect to the eigenvalue 1, then A is equal to:

a) $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ b) $\begin{bmatrix} -1 & 0 \\ -2 & 1 \end{bmatrix}$ c) $\begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$ d) $\begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$

+++++