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Abstract: Surgeons face a significant challenge due to the heat generated during drilling, as excessive
temperatures at the bone–tool interface can lead to irreversible damage to the regenerative soft tissue
and result in thermal osteonecrosis. While previous studies have explored the use of machine learning
to predict the temperature rise during bone drilling, this in vitro study introduces a comprehensive
approach by combining the Response Surface Methodology (RSM) with advanced machine learning
techniques. The main objective lies in the comprehensive evaluation and comparison of support
vector machine (SVM) and random forest (RF) models specifically for the optimization of the bone
drilling parameters to prevent thermal bone necrosis. A total of 27 experiments were conducted
using a multi-level factorial method, with analysis performed via the Minitab software version 19.1.
Performance metrics such as the mean squared error (MSE), mean absolute percentage error (MAPE),
and coefficient of determination (R2) were used to assess model accuracy. The RF model emerged
as the most effective, with R2 values of 94.2% for testing and 97.3% for training data, significantly
outperforming other models in predicting temperature fluctuations. This study demonstrates the
superior predictive capabilities of the RF model and offers a robust framework for the optimization
of surgical procedures to mitigate the risk of thermal damage.

Keywords: machine learning; temperature prediction; bone drilling; support vector; random forest
regression

1. Introduction

Bone drilling is an essential procedure in orthopedic surgery, dental implant placement,
and other medical interventions that involve the insertion of screws, plates, or prostheses
into the bone [1]. However, one of the significant challenges with bone drilling is the
generation of excessive heat, which can lead to a phenomenon called thermal osteonecro-
sis. Thermal osteonecrosis refers to the death of bone cells (osteocytes) due to elevated
temperatures [2,3].

The consequences of thermal osteonecrosis are far-reaching. The affected bone areas
may become weakened, leading to poor implant integration, prolonged healing times, or
increased susceptibility to post-operative infections [4]. For surgeries that demand robust
bone healing, like fracture repairs or spinal fusions, thermal osteonecrosis can even lead to
treatment failure [5,6]. Thermal osteonecrosis can be managed by optimizing the operation
of the surgical drilling system [7]. Achieving this often necessitates precise predictions,
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such as estimating the bone drilling temperature based on the optimal combination of the
drilling parameters.

The field of machine learning provides efficient techniques for the prediction of bone
drilling temperatures based on data [8]. As a branch of computer science, machine learning
focuses on how computers can learn autonomously without being directly programmed
with specific rules. It encompasses two primary areas: supervised learning and unsuper-
vised learning [9,10]. In supervised learning, predictive models are developed using labeled
data, involving tasks like predicting drilling temperatures through regression. Conversely,
unsupervised learning deals with unlabeled data and is often utilized for tasks such as
outlier detection through clustering [11].

Machine learning techniques are increasingly employed in the modern Industry 4.0
to forecast uncertainty and manage vast amounts of data. Pandey and Panda [12] used
machine learning models to alleviate drilling-induced damage to bovine bone. Akgun-
dogdu et al. [13] utilized machine learning methods to evaluate the bone characteristics and
categorize different specimens. Support vector machine (SVM) techniques have demon-
strated significant success in characterizing the rigidity of trabecular bone samples. Lu
et al. [14] implemented machine learning models to improve the anticipation of postsurgical
facial profiles using video imaging. Agarwal et al. [15] conducted a comparison of various
machine learning models to predict the mechanical strength of orthopedic bone screws,
while Agarwal et al. [16] confirmed different assumptions regarding the use of machine
learning models in forecasting thermal injuries. Torun and Öztürk [17] employed machine
learning models for robotic bone drilling, noting the effectiveness of closed-loop signals in
detecting drill bit damage and the morphology during sheep femur bone drilling.

The aim of developing predictive models is to create models that can accurately
predict new data that are not available during their creation [18]. A model trained on a
specific dataset cannot be evaluated on the same dataset because it retains a “memory”
of it. Therefore, the entire dataset is typically split into two parts: one for the training
of the model, known as the training set, and the other for the evaluation of the model,
known as the test set. This approach allows for the estimation of the model’s generalization
capabilities, indicating how well it will perform on unseen data. It is crucial to ensure that
no information from the test set leaks into the training set when developing predictive
models. Models built with training sets containing test set information will produce overly
optimistic results.

The experiment was designed and optimized using the Response Surface Methodology
(RSM) technique. The collected data were analyzed to develop two predictive models for
the temperature increase using the support vector machine (SVM) and random forest
(RF) methods. The main purpose of these models was to improve the evaluation of bone
workability. Therefore, the research objectives of this study were as follows.

• To investigate the crucial machinability factors affecting the bone drilling process,
with a particular emphasis on the temperature distribution. By exploring the thermo-
mechanical properties of these factors, we aim to enhance our understanding and
improve the efficiency of bone drilling procedures.

• To evaluate the performance of bovine bone under varying machining conditions,
specifically focusing on the effects of the spindle speed, feed rate, and drill bit diameter.
Additionally, we seek to analyze the thermo-mechanical interactions occurring during
the drilling process.

• To enhance the machining parameters and determine the best combinations of the
spindle speed, feed rate, and drill bit diameter to reduce thermal osteonecrosis in bone
by utilizing the Response Surface Methodology (RSM).

• To deploy ML models, particularly random forest (RF) and support vector machine
(SVM), to forecast the highest temperature increase. To assess the model’s accuracy
and performance in predicting the machining results based on the input variables and
confirm the precision and dependability of the ML models.
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2. Materials and Methods

The thermal and mechanical characteristics of fresh bovine bone are uniform and
closely mimic those of human bone [19,20]. The preparation process for the experimental
bone drilling involving bovine femur specimens is shown in Figure 1. The epiphysis (end)
of the fresh femur was removed using a saw. Subsequently, the diaphysis (middle part) was
chosen for experimentation [21,22], and the periosteum, which is the soft tissue attached to
the outer cortical bone, was eliminated to prevent the obstruction of the drill bit’s flute, as
recommended in previous studies [23–26]. Specimens with a cortical thickness exceeding
8 to 13.2 mm were selected for inclusion in the study [27,28].

Figure 1. (a) Bone specimen preparation, (b) schematic diagram of drilling, and (c) cortical bone
drilling experimental setup.

This investigation used bovine femur bone as the study material because human bone
was not accessible. Bovine bone is considered the closest analog to human bone in terms of
its properties. The femoral bone from cattle was obtained promptly after slaughter from a
local slaughterhouse. The bone specimens were stored in saline water at −20 ◦C to preserve
their mechanical and thermo-physical properties, and the experiments were conducted
within a few days of procurement.

The machinability study was performed with a radial drilling machine, employing a
high-speed steel (HSS, Bosch, Petaling Jaya, Malaysia) drill bit with a standard cutting point
head geometry of 118◦. The temperature readings were recorded using a multi-channel
temperature meter connected to a T-type thermocouple [29,30]. The data were stored in an
external storage repository. The bone workpiece was firmly fixed in a vice, and various
process parameters, as outlined in Table 1, were selected. The input variables considered in
this research were the spindle speed, feed rate, and drill bit diameter, while the response
variable measured was the elevated average maximum temperature.
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Table 1. Process parameters used in the experiment.

Machine: Sainsmart Genmitsu 3018-PROVer CNC (Sainsmart, Las Vegas, NV, USA)

Cutting Tool: HSS 118◦

Process parameter

Spindle speed (rpm) Feed rate (mm/min) Drill bit diameter (mm)
1000 20 2
1500 30 3
2000 40 4

2.1. Response Surface Methodology

The Response Surface Methodology (RSM) is a set of mathematical and statistical
techniques designed for the modeling and analysis of problems where multiple variables
influence a response variable, with the primary goal being to optimize this response [31,32].
Minitab, a statistical software program, provides robust tools for the performance of the
RSM. The first step in the RSM is to design experiments that yield sufficient data to
model the response surface, using designs such as central composite designs (CCD) and
Box–Behnken designs (BBD). Once the data from these experiments are collected, the next
step is to fit a polynomial model, typically a second-order (quadratic) model, to the data.
This model can be expressed as in Equation (1):

y = β0 + ∑k
i=1 βixi + ∑k

i=1 βiixi
2 + ∑k

i<j βijxixj + ϵ (1)

where y is the response variable, xi and xj are the input variables, β0 is the intercept, βi is the
linear coefficient, βii is the quadratic coefficient, βij is the interaction coefficient, and ϵ is the
error term. Minitab uses regression analysis to estimate the coefficients β of this polynomial
model, which includes performing an analysis of variance (ANOVA) to determine the
significance of the model and individual predictors, as well as a lack-of-fit test to check the
model’s fit to the data. After fitting the model, Minitab generates response surface plots
and contour plots to visualize the relationships between the input factors and the response.
These plots aid in understanding how changes in the input variables affect the response
and help to identify optimal conditions. The final step is to find the optimal settings of the
input variables that maximize or minimize the response. Minitab’s optimization tool uses
the fitted model to identify these settings, often by solving the optimization problem using
Equation (2):

Maximize or Minimize : f (x) = β0 + ∑k
i=1 βixi + ∑k

i=1 βiixi
2 + ∑k

i<j βijxixj (2)

2.2. Support Vector Machine for Regression (SVR)

Support vector regression (SVR) is a nonlinear regression method based on support
vector machines (SVM) [33,34]. It aims to construct a hyperplane that reduces the prediction
errors and maximizes the margin between the hyperplane and the closest data points. An
epsilon tube is used to define acceptable error boundaries. The algorithm applies a kernel
function to project the input data into a higher-dimensional feature space, allowing for the
creation of the hyperplane and the minimization of errors in this new space. The structure
of SVM regression is illustrated in Figure 2.

SVR can be expressed as a convex optimization problem according to Equation (3).
Convex optimization ensures that any local minimum is a global minimum, simplifying the
task of determining the optimal hyperplane. The optimization problem aims to minimize
the error within a specified margin of tolerance, often incorporating a regularization term
to prevent overfitting.

Minimize :
1
2

W2 + C
1

∑
i=1

(
ξi + ξ*

i

)
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Constraints :


Yi − ⟨W, Xi⟩ − b ≤ ε + ξi,
⟨W, Xi⟩+ b − Yi ≤ ε + ξ*

i ,
ξi, ξ*

i ≥ 0,
(3)

where Yi represents the classes, and Xi denotes a set of features. The parameter b corre-
sponds to the width of the hyperplane, and W signifies the margin. To handle situations
where the constraints become infeasible, slack variables ξi and ξ∗i are introduced. The pa-
rameter C is used to achieve a trade-off between the width of the margin and the degree of
misclassification, effectively controlling the balance between achieving a wider margin and
allowing some errors in classification. The process of building an SVM can be visualized
through the flow chart presented in Figure 3, which outlines the steps involved in training
and predicting the model.

Figure 2. The framework of support vector machine regression.

Figure 3. Flow chart for the implementation process of a support vector machine.
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SVR finds application in various fields requiring continuous value predictions, such
as financial forecasting, time-series prediction, and other domains necessitating robust
regression analysis. Understanding SVR requires a solid grasp of the basic concepts of
machine learning, optimization, and linear algebra. This technique is powerful because of
its ability to handle high-dimensional data and provide accurate predictions.

2.3. Random Forest Regression (RFR)

Random forest regression (RFR) is a supervised learning algorithm that falls within the
ensemble learning family and is utilized for tasks such as regression and classification [35].
During the training phase, numerous decision trees are created. Each decision tree in the
forest is constructed using a random subset of the training data and features, promoting
diversity and reducing overfitting. The final output from RFR is obtained by averaging the
predictions made by each tree, which enhances the accuracy and robustness. This method
capitalizes on the strengths of multiple models to produce a more reliable and stable
prediction compared to a single decision tree, as shown in Figure 4. RFR is widely favored
for its simplicity, versatility, and superior performance in handling complex datasets and
capturing non-linear relationships.

Figure 4. Illustration of random forest construction.

2.4. Data Pre-Processing and Performance Evaluation Metrics

The experimental data, capturing the average maximum temperatures recorded during
bone drilling at three distinct parameter levels, were imported into Google Colab using the
Pandas Python library (version 3.10.12). Pandas is widely used for its robust capabilities in
data manipulation, enabling the efficient handling and analysis of complex datasets.
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The SVM and RF models’ performance was evaluated using standard metrics for
model assessment, namely the mean squared error (MSE), mean absolute percentage error
(MAPE), and coefficient of determination (R2), described by the following equations:

R2 = 1 − ∑n
i=1(yi − ŷ)2

∑n
i=1(yi − y)2 , (4)

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

× 100, (5)

MSE =
1
n

n

∑
i=1

(yi − ŷ)2, (6)

where n denotes the quantity of data points, yi represents the observed values, ŷ stands for
the predicted values, and y denotes the mean value of y.

3. Results and Discussion

In optimization, the Design of Experiments (DOE) plays a pivotal role in systematically
planning and conducting experiments. By doing so, the DOE ensures that the data collected
are reliable and meaningful, which helps in drawing valid conclusions. This methodology
reduces the necessity for a large number of experiments, which can be resource-intensive,
time-consuming, and costly, while still maintaining high levels of precision in the results.

The accuracy of the results is a key consideration in this context. Ensuring accuracy
means that the outcomes of the experiments are not only precise but also reflect the true
effects of the variables being studied. This is where the Response Surface Methodology
(RSM) becomes particularly valuable. The RSM is a set of statistical and mathematical
techniques that are used to model and analyze problems where multiple variables influence
the responses. For instance, in medical applications, regarding the drilling temperature of
bone during surgery, the RSM can be used to model how different factors (like the spindle
speed, feed rate, and drill bit diameter) affect the temperature. By analyzing these factors,
researchers can optimize the drilling process to minimize the thermal damage to the bone,
thereby improving the surgical outcomes and patient recovery.

A total of 27 experiments were performed utilizing the multi-level factorial method, as
shown in Table 2, with the Minitab software aiding in the analysis. Figure 5a illustrates the
drilled holes within the bone and Figure 5b shows the schematic diagram of the thermo-
couple location. The temperature during the drilling process was continuously monitored
using a T-type thermocouple, capable of measuring temperatures from 0 to 260 ◦C, and
recorded with an Appellant AT4808 multi-channel thermometer data logger (Applent
Instruments, Changzhou, China). The results from these experiments are summarized in
Table 2.

Table 2. Temperature observed in case of drilling bovine bone.

Spindle Speed (rpm) Feed Rate (mm/min) Drill Bit Diameter (mm) Average Tmax (◦C)

1000 20 4 36.4
1000 30 3 35.9
1000 40 3 47.7
2000 40 2 45.2
1000 40 4 43.9
1500 40 3 49.5
1000 30 2 36.8
1500 30 2 42.5
1000 20 2 36
1000 30 4 37.5
2000 30 3 54.5
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Table 2. Cont.

Spindle Speed (rpm) Feed Rate (mm/min) Drill Bit Diameter (mm) Average Tmax (◦C)

2000 20 3 49.9
2000 40 4 62.5
1500 30 4 41.7
2000 20 2 44
2000 20 4 53.6
1500 20 2 37.5
2000 40 3 63.8
1500 20 3 43.4
1500 40 4 48.6
1500 40 2 37.5
1000 40 2 35.5
1500 20 4 42.9
1500 30 3 46.5

1000 20 3 35.7
2000 30 2 49
2000 30 4 55.6

Figure 5. (a) Illustration of bone drilling site and (b) schematic diagram of thermocouple location
from the drilling site.

3.1. Optimization Using RSM

The Response Surface Methodology (RSM) optimization technique was implemented
to determine the optimal combination of input variables, such as the spindle speed, feed
rate, and drill diameter, which resulted in the lowest feasible process temperature. Figure 6
illustrates the optimization procedure that was designed to consider the model’s predicted
minimum process temperature and desirability constraints. The red color represents the
optimization input, the blue color indicates the predicted outcome of the experiment, and
the black dots correspond to the level of each parameter as shown in Figure 6. The results
of the validation process, which encompass a thorough comparison with the experimental
data, are comprehensively presented in Table 3. Notably, the model exhibits a remarkably
low error rate of just 0.45%, underscoring its exceptional accuracy and reliability.

Within the studied range of input values, the process temperature can be reduced to a
minimum of 35.05 ◦C. The most favorable outcomes were achieved using a tool diameter
of 2 mm, a feed rate of 40 mm/min, and a rotation speed of 1000 rpm. As shown in
Figure 6, a comprehensive array of adjustable input parameters is available to ensure that
the temperature applied to the bone remains safe, effectively minimizing the risk of damage
to the bone tissue.
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Figure 6. Input parameter optimization to achieve minimum response temperature.

Table 3. Optimization to achieve the lowest temperature.

Optimization Spindle Speed (rpm) Feed Rate (mm/min) Dill Bit Diameter (mm) Average Tmax (◦C)

Initial drilling
parameters 1000 20 2 36

Model prediction 1000 40 2 35.05
Experimentation 1000 40 2 35.50
Error percentage - - - 0.45%

3.2. Prediction of Response Variables by SVM and RF

In this research, two distinct regression-based machine learning models were em-
ployed to forecast the response values derived from a bone drilling procedure. The dataset
was divided randomly, with 70% allocated for model training and the remaining 30% for
testing and validation purposes. The models utilized three key input variables—the spin-
dle speed, feed rate, and drill bit diameter—to predict the temperature generated during
drilling. To mitigate potential errors arising from differences in the units of these input
parameters, both the training and testing datasets were normalized using one-hot encoding.
Furthermore, cross-validation was conducted to evaluate and optimize the models by
employing a grid search CV to guarantee the selection of the most appropriate parameters
while simultaneously considering both training and testing errors.

The temperature values for bone drilling were derived from 27 experiments utilized
for both training and testing. Table 4 displays the varied predictions from the support
vector regression (SVR) and random forest regression (RFR) models. Table 5 lists the testing
and training errors, assessed using three performance indicators to gauge the prediction
accuracy.

Table 4. Predicted bone drilling temperature values from different machine learning algorithms.

Experimental Temperature (◦C) RFR Model Predicted Temperature (◦C) SVR Model Predicted Temperature (◦C)

35.7 38.442 42.360
49.9 51.764 45.013
54.5 52.77 45.013
36 36.976 42.360

36.4 38.538 42.360
36.8 37.726 42.360
42.9 43.051 43.585
43.9 44.299 42.361
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Table 5. Performance metrics for different machine learning algorithms.

Bone Drilling Temperature Predictor Model Errors

Test Errors Training Errors

SVR model RFR model SVR model RFR model

R2 0.249 0.942 0.257 0.973
MAPE 0.125 0.033 0.115 0.026
MSE 33.496 2.568 32.349 2.148

3.3. Comparison of Machine Learning and RSM Models

The precision and resilience of both the machine learning and standard RSM predictive
models were assessed utilizing three distinct error metrics: MSE, MAPE, and R2. A
comparison of these metrics is presented in Figure 7. It was noted that the machine learning
predictive model (RFR) demonstrated superior error metrics in comparison to the standard
RSM model. Thus, one can deduce that the RFR model is the most resilient and appropriate
predictive model for the forecasting of the temperature during bone drilling.

Figure 7. Error metrics in the context of machine learning models compared to the Response Surface
Methodology (RSM) model.

The spindle speed was deemed crucial for all outcomes. It was noted that the rise
in the drill bit diameter led to an increase in the temperature caused by drilling as the
helicoid formation deepened and expanded. In contrast, the temperature declined as the
feed rate rose. Ein-Afshar et al. [36] documented similar discoveries while examining
the drilling procedure on bone. The presence of non-uniform structures in bone samples
presents obstacles in attaining uniform surface smoothness and a consistent temperature
rise along the entire length of a bored hole. The cutting operation had a notable impact
on the adjacent tissue of the bone samples. As per the error metrics, the random forest
(RF) model demonstrated superior performance compared to the support vector machine
(SVM) regression model. The prediction of the response variables by RF and SVM is
plotted and compared with the experimental values in Figure 8, showing that the RF
predictions were closer to the experimental values, thereby reducing the error and making
RF a better-performing model.
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Figure 8. Comparison of experimental and predicted temperature values for two machine learning
models.

4. Conclusions

This experimental study used machine learning models to predict temperature rises
during bone drilling. Tests were conducted on bovine femur bone with different drilling
settings to develop predictive algorithms. The study examined how various drilling
parameters affected the temperature increases throughout the process, leading to several
significant findings.

• The RSM method found that the best operating conditions were achieved with a tool
diameter of 2 mm, a feed rate of 40 mm/min, and a spindle speed of 1000 rpm.

• This study found that the RFR model outperformed the SVM regression model and
RSM, as evidenced by the lower errors in the performance metrics when comparing
the three methods.

• The precision in predicting the bone drilling temperatures using the RSM method is
79%, while it is 97.3% with RFR and 25.7% with SVR models.

• The machine learning RFR model enhanced the drilling efficiency and reduced the
risk of bone thermal damage by accurately predicting the temperature rises.

4.1. Significance of the Study

This study holds significant theoretical and practical importance for the machining
of bone and bone-like materials. It enhances the drilling techniques, leading to more
efficient and effective drilling operations by determining the optimal drilling parameters for
drilling surgeries. The research highlights the impressive capabilities of machine learning
techniques, particularly the RF model, in accurately predicting and optimizing the drilling
temperatures. This success suggests a promising future for AI-driven solutions in industrial
settings. It encourages the further exploration of machine learning’s potential to enhance
the precision and efficiency across various industries. The broader implications of this study
extend beyond its specific findings, influencing manufacturing processes, sustainability
efforts, and the scope of machine learning in industrial optimization. The insights gained
from this research can lead to improved practices and significant advancements, benefiting
researchers, companies, and society as a whole.
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4.2. Limitations

This study has inherent limitations that need to be acknowledged. The complexity
and difficulty of the experimental process resulted in a somewhat limited dataset for the
training of the machine learning models. This restriction could impact the accuracy of
the predicted temperature values, as models trained on smaller datasets may not perform
as well. Additionally, if this research is extended to in vivo real-time medical surgeries,
monitoring temperature variations at the drill site presents another challenge. The potential
technical solutions include the use of more advanced sensor technologies like real-time
temperature sensors placed in the drill bit and the development of new monitoring methods
to overcome the identified limitations. The limited duration of surgery and the constraints
in using thermocouples for temperature measurement add to the difficulty.
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