King Saud University College of Sciences Department of Mathematics

Second Mid Term, S1 1441 M 380 - Stochastic Processes Time: 90 minutes - Female Sec.

Answer the following questions:

Q1: [4+5]

a) For the Markov process $\left\{X_{_{t}}\right\},$ t=0,1,2,...,n with states $i_{_{0}},i_{_{1}},i_{_{2}},$... $,i_{_{n-1}},i_{_{n}}$

 $Prove \ that: \ Pr\big\{X_0 = i_0, X_1 = i_1, X_2 = i_2, \ldots, X_n = i_n\big\} = p_{i_0} P_{i_0 i_1} P_{i_1 i_2} \ldots P_{i_{n-1} i_n} \ where \ p_{i_0} = pr\big\{X_0 = i_0\big\}$

b) Consider a spare parts inventory model in which either 0, 1, or 2 repair parts are demanded in any period, with $\Pr\{\xi_n=0\}=0.5$, $\Pr\{\xi_n=1\}=0.4$, $\Pr\{\xi_n=2\}=0.1$ and suppose s=0 and S=2 Determine the transition probability matrix for the Markov chain $\{X_n\}$, where X_n is defined to be the quantity on hand at the end of period n.

Q2: [3+6]

a) A particle moves among the states 0, 1, 2 according to a Markov process whose transition probability matrix is

$$\begin{array}{c|cccc}
0 & 1 & 2 \\
0 & 0.5 & 0.5 \\
\mathbf{P} = 1 & 0.5 & 0 & 0.5 \\
2 & 0.5 & 0.5 & 0
\end{array}$$

Let X_n denote the position of the particle at the nth move. Calculate $Pr\{X_n=0|X_0=0\}$ for n=0,1,2

b) Consider the Markov chain whose transition probability matrix is given by

1

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0.1 & 0.4 & 0.1 & 0.4 \\ 2 & 0.2 & 0.1 & 0.6 & 0.1 \\ 3 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (i) Starting in state 2, determine the probability that the Markov chain ends in state 0.
- (ii) Determine the mean time to absorption.

Q3: [7]

Suppose that the summands ξ_1, ξ_2, \dots are continuous random variables having a probability density function $f(z) = \begin{cases} \lambda e^{-\lambda z} & \text{for } z \ge 0 \\ 0 & \text{for } z < 0 \end{cases}$

and
$$P_N(n) = \beta(1-\beta)^{n-1}$$
 for $n = 1, 2, ...$

Find the probability density function for $X = \xi_1 + \xi_2 + ... + \xi_N$

The Model Answer

Q1: [4+5]

a)

$$:: \Pr \{X_0 = i_0, X_1 = i_1, X_2 = i_2, ..., X_n = i_n \}$$

$$=\Pr\left\{X_{0}=i_{0},X_{1}=i_{1},X_{2}=i_{2},\ldots,X_{n-1}=i_{n-1}\right\}.\Pr\left\{X_{n}=i_{n}\,\middle|\,X_{0}=i_{0},X_{1}=i_{1},X_{2}=i_{2},\ldots,X_{n-1}=i_{n-1}\right\}$$

=
$$\Pr \{X_0 = i_0, X_1 = i_1, X_2 = i_2, \dots, X_{n-1} = i_{n-1}\}.P_{i_{n-1}i_n}$$
 Definition of Markov

By repeating this argument n-1 times

$$\therefore \Pr\{X_0 = i_0, X_1 = i_1, X_2 = i_2, \dots, X_n = i_n\}$$

 $=p_{i_0}P_{i_0i_1}P_{i_1i_2}\dots P_{i_{n-2}i_{n-1}}P_{i_{n-1}i_n} \text{ where } p_{i_0}=Pr\left\{X_0=i_0\right\} \text{ is obtained from the initial distribution of the process.}$

Where

$$P_{ij} = \begin{cases} pr = (\xi_n = 2 - j), & i \le 0 \\ pr = (\xi_n = i - j), & 0 < i \le 2 \end{cases}$$
 replenishment

Q2: [3+6]

a)

$$P_{00}^0 = Pr\{X_0 = 0 | X_0 = 0\} = 1$$

$$P_{00}^{1} = Pr\{X_{1} = 0 | X_{0} = 0\} = 0$$

$$P_{00}^{2} = \Pr\{X_{1} = 0 | X_{0} = 0\} = \begin{bmatrix} 0 & 0.5 & 0.5 \end{bmatrix} \begin{bmatrix} 0 \\ 0.5 \\ 0.5 \end{bmatrix} = 0.5$$

b)

$$\mathbf{P} = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 0 & 1 & 0 & 0 & 0 \\ 0.1 & 0.4 & 0.1 & 0.4 \\ 0.2 & 0.1 & 0.6 & 0.1 \\ 3 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} u_i &= pr \left\{ X_T = 0 \middle| X_0 = i \right\} & \text{ for i=1,2,} \\ and & v_i = & \text{E}[\, T \middle| X_0 = i] & \text{ for i=1,2.} \end{split}$$

(a)

$$\begin{split} u_{\mathrm{l}} &= p_{\mathrm{l}0} + p_{\mathrm{l}1}u_{\mathrm{l}} + p_{\mathrm{l}2}u_{\mathrm{2}} \\ u_{\mathrm{l}} &= p_{\mathrm{20}} + p_{\mathrm{21}}u_{\mathrm{l}} + p_{\mathrm{22}}u_{\mathrm{2}} \end{split}$$

 \Rightarrow

$$u_1 = 0.1 + 0.4u_1 + 0.1u_2$$

$$u_2 = 0.2 + 0.1u_1 + 0.6u_2$$

 \Rightarrow

$$6u_1 - u_2 = 1 \tag{1}$$

$$u_1 - 4u_2 = -2 \tag{2}$$

Solving (1) and (2), we get

$$u_1 = \frac{6}{23}$$
 and $u_2 = \frac{13}{23}$

Starting in state 2, the probability that the Markov chain ends in state 0 is

$$u_2 = u_{20} = \frac{13}{23}$$

(b) Also, the mean time to absorption can be found as follows

$$v_1 = 1 + p_{11}v_1 + p_{12}v_2$$

$$v_2 = 1 + p_{21}v_1 + p_{22}v_2$$

 \Rightarrow

$$v_1 = 1 + 0.4v_1 + 0.1v_2$$

 $v_2 = 1 + 0.1v_1 + 0.6v_2$

 \Rightarrow

$$6v_1 - v_2 = 10$$
 (1)
 $v_1 - 4v_2 = -10$ (2)

$$v_1 - 4v_2 = -10 \tag{2}$$

Solving (1) and (2), we get $v_2 = v_{20} = \frac{70}{23}$

Q3: [7]

We have
$$f_X(z) = \sum_{n=1}^{\infty} f^n(z) P_N(n)$$

 \because The n-fold convolution of f(z) is the Gamma density function, $n \ge 1$

$$\therefore f^{n}(z) = \begin{cases} \frac{\lambda^{n}}{\Gamma(n)} z^{n-1} e^{-\lambda z} & z \ge 0\\ 0 & z < 0 \end{cases}$$

 \Rightarrow

$$f^{n}(z) = \begin{cases} \frac{\lambda^{n}}{(n-1)!} z^{n-1} e^{-\lambda z} & z \ge 0\\ 0 & z < 0 \end{cases}$$

$$\therefore f_X(z) = \lambda \beta e^{-\lambda z} \sum_{n=1}^{\infty} \frac{[\lambda(1-\beta)z]^{n-1}}{(n-1)!}$$
$$= \lambda \beta e^{-\lambda z} \cdot e^{\lambda(1-\beta)z}$$
$$= \lambda \beta e^{-\lambda \beta z}, \quad z \ge 0$$

 \therefore X has an exponential distribution with parameter $\lambda\beta$.