

First Mid Term, S1-1442H M 380 – Stochastic Processes Time: 90 minutes

Answer the following questions:

Q1:[3+2+3]

An oil drilling company drills at a large number of locations in search of oil. The probability of success at any location is 0.25 and the locations may be regarded as independent.

- a) What is the probability that the driller will experience 1 success if 10 locations are drilled?
- b) The driller feels that he will go bankrupt if he drills 10 times before experiencing his first success. What is the probability that he will go bankrupt?
- c) What is the probability that he will get the first success on the 10th trial?

Q2:[5+4]

- a) The joint probability density function of the two random variables X and Y is f(x,y)=8xy, $0 \le x \le y \le 1$. Find $f_{x|y}(x|\frac{1}{2})$ and $\rho(X,Y)$
- b) Let X and Y two random variables have the joint normal (bivariate normal) distribution. What value of α that minimizes the variance of $Z=\alpha X+(1-\alpha)Y$? Simplify your result when X and Y are independent.

Q3:[5+3]

a) Let $X = \begin{cases} 0 & \text{if } N = 0 \\ \xi_1 + \xi_2 + \dots + \xi_N & \text{if } N > 0 \end{cases}$ be a random sum and assume that $E(\xi_k) = \mu$, $E(N) = \upsilon$ and $Var(\xi_k) = \sigma^2$, $Var(N) = \tau^2$

Prove that $E(X) = \mu v$ and $Var(X) = v\sigma^2 + \mu^2 \tau^2$

b) The number of accidents occurring in a factory in a week is a Poisson random variable with mean 2. The number of individuals injured in different accidents is independently distributed, each with mean 3 and variance 4. Determine the mean and variance of the number of individuals injured in a weak.

2

The Model Answer

Q1:[3+2+3]

a) This implies that n=10, p=0.25 and X=1

$$pr(x=1) = {10 \choose 1} p^{1} q^{9}$$

$$= 10 \times 0.25 \times 0.75^{9}$$

$$= 0.1877$$

b) The probability that he will go bankrupt is given by

$$pr(x=0) = {10 \choose 0} p^{0} q^{10}$$
$$= 0.25^{0} \times 0.75^{10}$$
$$= 0.0563$$

c) What is the probability that he will get the first success on the 10th trial?

$$pr(x=10)=p(1-p)^9$$

=0.25(0.75)⁹
=0.0188

Q2:[5+4]

a)
$$f_{x|y}(x,y) = \frac{f_{x,y}(x,y)}{f_y(y)}$$

$$f_{x,y}(x,y)=8xy$$
, $0 \le x \le y \le 1$

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x,y)dx$$
$$= \int_{0}^{y} 8xydx$$
$$= 8y \left[\frac{x^{2}}{2}\right]_{0}^{y}$$

$$\therefore$$
 $f_v(y)=4y^3$, $0 \le y \le 1$

$$\therefore f_{X|Y}(x|y) = \frac{8xy}{4y^3}$$
$$= \frac{2x}{y^2}$$

$$\therefore f_{x|Y}(x|\frac{1}{2})=8x, \quad 0 \le x \le 1$$

$$f_X(x) = \int_{-\infty}^{\infty} f(x,y) dy$$
$$= \int_{x}^{1} 8xy dy, \qquad x \le y \le 1$$
$$= 8x \left[\frac{y^2}{2} \right]_{x}^{1}$$

:.
$$f_X(x) = 4x(1-x^2)$$
, $0 \le x \le 1$

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$
$$= \int_{0}^{1} x \cdot 4x (1 - x^{2}) dx$$
$$= 4 \int_{0}^{1} (x^{2} - x^{4}) dx$$

$$\therefore E(X) = 4\left[\frac{x^3}{3} - \frac{x^5}{5}\right]_0^1 = \frac{8}{15}$$

$$E(X^{2}) = \int_{0}^{1} x^{2} \cdot 4x(1-x^{2}) dx$$
$$= 4 \int_{0}^{1} (x^{3}-x^{5}) dx$$

$$\therefore E(X^2) = \frac{1}{3}$$

$$Var(X)=E(X^2)-E^2(X)$$

:.
$$Var(X) = \frac{1}{3} - (\frac{8}{15})^2 = \frac{11}{225}$$

Similarly,

$$E(Y) = \int_{0}^{1} y(4y^{3}) dy$$

$$\therefore E(Y) = \frac{4}{5}$$

$$E(Y^2) = \int_{0}^{1} y^2 (4y^3) dy$$

$$\therefore E(Y^2) = \frac{2}{3}$$

$$Var(Y)=E(Y^2)-E^2(Y)$$

:.
$$Var(Y) = \frac{2}{3} - \frac{16}{25} = \frac{2}{75}$$

$$E(XY) = \int_{0}^{1} \int_{0}^{y} xy(8xy) dxdy$$
$$= 8 \int_{0}^{1} y^{2} \left[\frac{x^{3}}{3} \right]_{0}^{y} dy$$

$$E(XY) = \frac{8}{3} \int_{0}^{1} y^{5} dy = \frac{4}{9}$$

$$Cov(X,Y)=E(XY) - E(X)E(Y)$$

:. Cov(X,Y)=
$$\frac{4}{9}$$
 - $(\frac{8}{15})(\frac{4}{5}) = \frac{4}{225}$

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y}$$
$$= \frac{4/225}{\sqrt{11/225}\sqrt{2/75}} = \frac{4}{\sqrt{66}}$$

$$\therefore \rho(X,Y) \approx 0.49$$

b)
$$Z = \alpha X + (1 - \alpha)Y$$

$$Var(Z) = \alpha^2 \sigma_X^2 + 2\alpha (1 - \alpha) \rho \sigma_X \sigma_Y + (1 - \alpha)^2 \sigma_Y^2$$

$$\therefore \operatorname{Var}(Z) = \alpha^2 \sigma_X^2 + (2\alpha - 2\alpha^2) \rho \sigma_X \sigma_Y + (1 - 2\alpha + \alpha^2) \sigma_Y^2$$

To get α^* that minimizes Var(Z) let $\frac{\partial V}{\partial \alpha} = 0$

$$\Rightarrow$$

$$2\alpha\sigma_X^2 + (2-4\alpha)\rho\sigma_X\sigma_Y + (-2+2\alpha)\sigma_Y^2 = 0$$

$$\therefore \alpha = \alpha^* = \frac{\sigma_Y^2 - \rho \sigma_X \sigma_Y}{\sigma_Y^2 - 2\rho \sigma_Y \sigma_Y + \sigma_Y^2}, -1 < \rho < 1$$

For independent random variables X and Y , ρ =0

Consequently,
$$\alpha^* = \frac{\sigma_Y^2}{\sigma_X^2 + \sigma_Y^2}$$

Q3:[5+3]

i) To prove that $E(X)=\mu\nu$

a) :
$$E(X) = \sum_{n=0}^{\infty} E[X|N = n]P_N(n)$$
 Def. of Total Expectation

$$\therefore E(X) = \sum_{n=1}^{\infty} E[\xi_1 + \xi_2 + \dots + \xi_N | N = n] P_N(n)$$
 Def. of Random Sum

$$\therefore E(X) = \sum_{n=1}^{\infty} E[\xi_1 + \xi_2 + \dots + \xi_n | N = n] P_N(n)$$
 Prop. of Conditional Expectation

$$\therefore E(X) = \sum_{n=1}^{\infty} E[\xi_1 + \xi_2 + \dots + \xi_n] P_N(n) \text{ where } N \text{ is independent of } \xi_1, \ \xi_2, \ \dots$$

$$: E(\xi_k) = \mu, \quad k=1,2,...,n$$

$$\therefore E(X) = \sum_{n=1}^{\infty} n \mu P_N(n)$$

$$\therefore E(X) = \mu \sum_{n=1}^{\infty} n P_N(n)$$

$$\therefore E(X) = \mu E(N) = \mu v$$

i) To prove that $Var(X) = v\sigma^2 + \mu^2 \tau^2$

$$Var(X)=E[(X - \mu \nu)^{2}]$$

$$=E[X - N\mu + N\mu - \nu \mu]^{2}$$

$$Var(X)=E[(X - N\mu)^{2}] + E[\mu^{2}(N - \nu)^{2}] + 2E[\mu(X - N\mu)(N - \nu)]$$
(1)

$$:: E[(X - N\mu)^{2}] = \sum_{n=0}^{\infty} E[(X - N\mu)^{2} | N = n] P_{N}(n)$$

$$= \sum_{n=1}^{\infty} E[(\xi_{1} + \xi_{2} + \dots + \xi_{n} - n\mu)^{2} | N = n] P_{N}(n)$$

$$\therefore E[(X - N\mu)^{2}] = \sum_{n=1}^{\infty} E(\xi_{1} + \xi_{2} + \dots + \xi_{n} - n\mu)^{2}]P_{N}(n)$$

:
$$Var(\xi_k) = E(\xi_k - \mu)^2 = \sigma^2, \quad k = 1, 2, ..., n$$

$$\therefore E[(X - N\mu)^{2}] = \sum_{n=1}^{\infty} n\sigma^{2} P_{N}(n)$$
$$= \sigma^{2} \sum_{n=1}^{\infty} n P_{N}(n)$$

$$\therefore E[(X - N\mu)^2] = \upsilon \sigma^2, \text{ where } \sum_{n=1}^{\infty} nP_N(n) = \upsilon \qquad (2)$$

$$E[\mu^{2}(N-v)^{2}] = \mu^{2}E[(N-v)^{2}]$$

$$\therefore E[\mu^{2}(N-v)^{2}] = \mu^{2}Var(N) = \mu^{2}\tau^{2}$$
(3)

Also,

$$E[\mu(X - N\mu)(N - \nu)] = \mu \sum_{n=1}^{\infty} E[(X - n\mu)(n - \nu) | N = n] P_N(n)$$

$$= \mu \sum_{n=1}^{\infty} (n - \nu) E[(X - n\mu) | N = n] P_N(n)$$

$$= 0$$

$$(4)$$

where
$$E[(X-n\mu)|N=n]=E(X-n\mu)$$
 independent prop.
$$=E(\xi_1+\xi_2+\ldots+\xi_n-n\mu)$$

$$=n\mu-n\mu=0$$

Substitute (2), (3) and (4) in (1), we get

$$Var(X) = \upsilon \sigma^2 + \mu^2 \tau^2$$

b)

 $N \sim \text{Poisson}(2)$

N is the # of accidents in a week

 $\xi_{\scriptscriptstyle k}$ is the # of individuals injured for kth accident

$$E(\xi_k) = 3, \quad \text{var}(\xi_k) = 4$$

$$E(N) = 2$$
, $var(N) = 2$

$$E(X) = \mu v = 3(2) = 6$$

$$var(X) = v\sigma^2 + \mu^2 \tau^2$$

$$\therefore \text{ var}(X) = 2(4) + 9(2) = 26$$