

First Mid Term Mu Exam, S2 1442 M 380 – Stochastic Processes Time: 90 minutes

Answer the following questions:

Q1:[4+5]

a) The joint probability density function of the two random variables X and Y is f(x,y)=8xy, $0 \le x \le y \le 1$. Find $f_{Y|X}(y|\frac{1}{3})$

b) Given the joint probability mass function of two random variables X and Y as in the following table:

Y	1	2	3
0	1/8	0	0
1	0	1/4	1/8
2	0	1/4	1/8
3	1/8	0	0

- i) Find $\rho(X,Y)$
- ii) Determine whether X and Y are two independent random variables or not? Justify your answer.

Q2:[4+4]

a) Let $X = \begin{cases} 0 & \text{if } N = 0 \\ \xi_1 + \xi_2 + \dots + \xi_N & \text{if } N > 0 \end{cases}$ be a random sum and assume that $E(\xi_k) = \mu$, $E(N) = \nu$ and $Var(\xi_k) = \sigma^2$, $Var(N) = \tau^2$

Prove that $E(X) = \mu v$ and $Var(X) = v\sigma^2 + \mu^2 \tau^2$

- b) The following experiment is performed: An observation is made of a Poisson random variable N with parameter λ . Then N independent Bernoulli trials are performed, each with probability p of success. Let Z be the total number of successes observed in the N trials.
- i) Formulate Z as a random sum and thereby determine its mean and variance.
- ii) What is the distribution of Z?

Q3:[3+2+3]

An oil drilling company drills at a large number of locations in search of oil. The probability of success at any location is 0.25 and the locations may be regarded as independent.

- a) What is the probability that the driller will experience 1 success if 10 locations are drilled?
- b) The driller feels that he will go bankrupt if he drills 10 times before experiencing his first success. What is the probability that he will go bankrupt?
- c) What is the probability that he will get the first success on the 10th trial?

The Model Answer

Q1: [4+5]

a)
$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_{Y}(x)}$$

$$f_{X,Y}(x,y)=8xy, \ 0 \le x \le y \le 1$$

$$f_{X}(x) = \int_{-\infty}^{\infty} f(x,y) dy$$
$$= \int_{x}^{1} 8xy dy$$
$$= 8x \left[\frac{y^{2}}{2} \right]_{x}^{1}$$

:.
$$f_X(x) = 4x(1-x^2)$$
, $0 \le x \le 1$

$$\therefore f_{Y|X}(y|x) = \frac{8xy}{4x(1-x^2)}$$
$$= \frac{2y}{1-x^2}$$

$$f_{Y|X}(y|\frac{1}{3}) = \frac{9}{4}y, \quad 0 \le y \le 1$$

b)

	1	2	3	$P_{X}(x)$
0	1/8	Y ₀	0	1/8
1	0	1/4	1/8	3/8
2	0	1/4	1/8	3/8
3	1/8	0	0	1/8
$P_{Y}(y)$	2/8	4/8	2/8	Sum=1

 $E(X) = \frac{3}{2}$, $E(X^2) = 3$, $Var(X) = \frac{3}{4}$

E(Y)=2, $E(Y^2)=\frac{9}{2}$, $Var(Y)=\frac{1}{2}$

E(XY)=3

Cov(X,Y)=E(XY)-E(X)E(Y)=0

$$\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} = 0$$

 \Rightarrow X and Y are not correlated

: for example, P(X=1,Y=1)=0, but $P(X=1)P(Y=1)=\frac{3}{8}(\frac{2}{8})=\frac{3}{32}$

$$\Rightarrow$$
 P(X=1,Y=1) \neq P(X=1)P(Y=1)

.. X and Y are not independent r.vs

Q2:[4+4]

a)

(i) To prove that $E(X)=\mu\nu$

:
$$E(X) = \sum_{n=0}^{\infty} E[X | N = n] P_N(n)$$
 Def. of Total Expectation

$$\therefore E(X) = \sum_{n=1}^{\infty} E[\xi_1 + \xi_2 + \dots + \xi_N | N = n] P_N(n)$$
 Def. of Random Sum

$$\therefore E(X) = \sum_{n=1}^{\infty} E[\xi_1 + \xi_2 + \dots + \xi_n | N = n] P_N(n)$$
 Prop. of Conditional Expectation

$$\therefore E(X) = \sum_{n=1}^{\infty} E[\xi_1 + \xi_2 + \dots + \xi_n] P_N(n) \text{ where } N \text{ is independent of } \xi_1, \ \xi_2, \ \dots$$

$$\therefore$$
 E(ξ_k)= μ , k=1,2, ...,n

$$\therefore E(X) = \sum_{n=1}^{\infty} n \mu P_N(n)$$

$$\therefore E(X) = \mu \sum_{n=1}^{\infty} n P_N(n)$$

$$E(X) = \mu E(N) = \mu v$$

(ii) To prove that
$$Var(X) = v\sigma^2 + \mu^2 \tau^2$$

$$Var(X)=E[(X - \mu \nu)^{2}]$$

$$=E[X - N\mu + N\mu - \nu \mu]^{2}$$

$$Var(X)=E[(X - N\mu)^{2}] + E[\mu^{2}(N - \nu)^{2}] + 2E[\mu(X - N\mu)(N - \nu)]$$
(1)

$$:: E[(X - N\mu)^{2}] = \sum_{n=0}^{\infty} E[(X - N\mu)^{2} | N = n] P_{N}(n)$$

$$= \sum_{n=1}^{\infty} E[(\xi_{1} + \xi_{2} + \dots + \xi_{n} - n\mu)^{2} | N = n] P_{N}(n)$$

$$\therefore E[(X - N\mu)^{2}] = \sum_{n=1}^{\infty} E(\xi_{1} + \xi_{2} + \dots + \xi_{n} - n\mu)^{2}]P_{N}(n)$$

:
$$Var(\xi_k) = E(\xi_k - \mu)^2 = \sigma^2$$
, $k = 1, 2, ..., n$

$$\therefore E[(X - N\mu)^{2}] = \sum_{n=1}^{\infty} n\sigma^{2} P_{N}(n)$$
$$= \sigma^{2} \sum_{n=1}^{\infty} n P_{N}(n)$$

$$\therefore E[(X - N\mu)^2] = \upsilon \sigma^2, \text{ where } \sum_{n=1}^{\infty} n P_N(n) = \upsilon \qquad (2)$$

$$E[\mu^{2}(N-v)^{2}] = \mu^{2}E[(N-v)^{2}]$$

$$\therefore E[\mu^{2}(N-v)^{2}] = \mu^{2}Var(N) = \mu^{2}\tau^{2}$$
(3)

Also,

$$E[\mu(X - N\mu)(N - \nu)] = \mu \sum_{n=1}^{\infty} E[(X - n\mu)(n - \nu) | N = n] P_N(n)$$

$$= \mu \sum_{n=1}^{\infty} (n - \nu) E[(X - n\mu) | N = n] P_N(n)$$

$$= 0$$
(4)

where
$$E[(X - n\mu)|N = n] = E(X - n\mu)$$
 independent prop.

$$= E(\xi_1 + \xi_2 + \dots + \xi_n - n\mu)$$

$$= n\mu - n\mu = 0$$

Substitute (2), (3) and (4) in (1), we get

$$Var(X) = \upsilon \sigma^2 + \mu^2 \tau^2$$

b)

i)
$$Z = \xi_1 + \xi_2 + \dots + \xi_N$$
, $N > 0$

$$E(\xi_{k}) = \mu = p$$
, $Var(\xi_{k}) = \sigma^{2} = p(1-p)$

$$E(N) = v = \lambda$$
, $Var(N) = \tau^2 = \lambda$

- $:: E(Z) = \mu v$
- $\therefore E(Z) = \lambda p$
- $\therefore \operatorname{Var}(\mathbf{Z}) = v\sigma^2 + \mu^2 \tau^2$
- $\therefore \operatorname{Var}(\mathbf{Z}) = \lambda p(1-p) + p^2 \lambda$ $= \lambda p$
- ii) $Z \sim \text{Poisson}(\lambda p)$

Q3:[3+2+3]

a) This implies that n=10, p=0.25 and X=1

$$pr(x=1) = {10 \choose 1} p^{1} q^{9}$$

$$= 10 \times 0.25 \times 0.75^{9}$$

$$= 0.1877$$

b) The probability that he will go bankrupt is given by

$$pr(x=0) = {10 \choose 0} p^{0} q^{10}$$
$$= 0.25^{0} \times 0.75^{10}$$
$$= 0.0563$$

c) What is the probability that he will get the first success on the 10th trial?

$$pr(x=10)=p(1-p)^9$$

=0.25(0.75)⁹
=0.0188