

First Mid Term Mu Exam, S1 1441-1442 M 380 – Stochastic Processes Time: 90 minutes

Answer the following questions:

Q1:[5+3]

a) Given the following joint distribution. Calculate E(X), E(Y), Var(X), Var(Y), Cov(X,Y), $\rho(X,Y)$, and verify E(X) using the law of total Expectation.

Y	0	1
0	0.1	0.3
1	0.4	0.2

b) The lifetime, in years, of a certain class of light bulbs has an exponential distribution with parameter $\lambda = 2$. What is the probability that a bulb selected at random from this class will last more than 1.5 years? What is the probability that a bulb selected at random will last exactly 1.5 years?

Q2: [4+4]

- a) Given independent exponentially distributed random variables S and T with common parameter λ , determine the probability density function of the sum R=S+T and identify its type by name.
- b) Let X and Y two random variables have the joint normal (bivariate normal) distribution. What value of α that minimizes the variance of $Z=\alpha X+(1-\alpha)Y$? Simplify your result when X and Y are independent

Q3:[3+3+3]

- a) Let X and Y are jointly distributed random variables having the density function $f_{XY}(x,y) = \frac{1}{y}e^{-(x/y)-y}$ for x,y>0 find $f_{X|Y}(x|y)$
- b) If $T \sim \exp(\lambda)$ prove that: $pr(T > t + s | T > s) = pr(T > t) \quad \forall t, s \ge 0$
- c) Suppose that a number of miles that a car can run before its battery wears out is exponentially distributed with an average value of 10000 miles. If a person desires to take a 9000-mile trip, what is the probability that he will be able to complete his trip without having to replace the car battery?

The Model Answer

Q1:[5+3]

a)

Y	0	1	$P_{Y}(y)$
0	0.1	0.3	0.4
1	0.4	0.2	0.6
$P_{X}(x)$	0.5	0.5	Sum=1

$$E(X)=0.5$$
, $E(X^2)=0.5$, $Var(X)=0.25$

$$E(Y)=0.6$$
, $E(Y^2)=0.6$, $Var(Y)=0.24$

$$E(XY)=0.2$$
, $Cov(X,Y)=-0.10$, $\rho(X,Y)=-0.4$

$$P(X|Y=y) = \frac{P_{X,Y}(x,y)}{P_{Y}(y)}$$

$$P(X=0|Y=0) = \frac{0.1}{0.4} = \frac{1}{4}, \quad P(X=1|Y=0) = \frac{0.3}{0.4} = \frac{3}{4}$$

$$P(X=0|Y=1) = \frac{0.4}{0.6} = \frac{2}{3}, P(X=1|Y=1) = \frac{0.2}{0.6} = \frac{1}{3}$$

X Y	0	1	E[X Y]
y=0	1/4	3/4	3/4
y=1	2/3	1/3	1/3

$$E(X) = \sum_{y} E(X | Y=y) P_{Y}(y)$$

$$E(X) = \frac{3}{4}P_{Y}(0) + \frac{1}{3}P_{Y}(1)$$

$$E(X) = \frac{3}{4}(0.4) + \frac{1}{3}(0.6) = 0.5$$

b)
$$X \sim \exp(2)$$

- i) $Pr(T>1.5)=e^{-3}=0.0498$
- ii) Pr(T=1.5)=0

Q2:[4+4]

a)

 \therefore S, T ~ exp(λ), R=S+T

 \therefore R ~ Gamma(2, λ)

$$\Rightarrow$$
 $f_R(r) = \frac{\lambda^2}{\Gamma(2)} r^{2-1} e^{-\lambda r}$

$$\therefore f_{R}(r) = \lambda^{2} r e^{-\lambda r}, \quad r \ge 0$$

Which is the Gamma probability density function.

b) $Z = \alpha X + (1 - \alpha)Y$

$$Var(Z) = \alpha^2 \sigma_X^2 + 2\alpha (1-\alpha)\rho \sigma_X \sigma_Y + (1-\alpha)^2 \sigma_Y^2$$

To get α^* that minimizes Var(Z) let $\frac{\partial V}{\partial \alpha} = 0$

 \Rightarrow

$$\alpha^* = \frac{\sigma_Y^2 - \rho \sigma_X \sigma_Y}{\sigma_Y^2 - 2\rho \sigma_X \sigma_Y + \sigma_Y^2}$$

For independent random variables X and Y , ρ =0

Consequently, $\alpha^* = \frac{\sigma_Y^2}{\sigma_X^2 + \sigma_Y^2}$

Q3:[3+3+3]

a)
$$f_{xy}(x,y) = \frac{1}{y}e^{-(x/y)-y}$$
 for x, y >0

$$f_{X|Y}(x|y) = \frac{f_{XY}(x,y)}{f_{Y}(y)}$$

$$f_{Y}(y) = \int_{0}^{\infty} f(x,y) dx$$

$$= \int_{0}^{\infty} \frac{1}{y} e^{-(x/y)-y} dx$$

$$= \frac{e^{-y}}{y} \int_{0}^{\infty} e^{-x/y} dx$$

$$= \frac{e^{-y}}{y} \left[\frac{e^{-x/y}}{-1/y} \right]_{0}^{\infty}$$

$$= e^{-y} \left[0 + 1 \right]$$

$$\therefore$$
 $f_{y}(y) = e^{-y}, y > 0$

Note:
$$\lim_{x\to\infty} e^{-x} = 0$$

$$\therefore f_{X|Y}(x|y) = \frac{1}{y}e^{-x/y} \quad \text{for } x, y > 0$$

b)

$$\begin{split} pr(T>t+s \big| T>s) = & \frac{pr(T>t+s, T>s)}{pr(T>s)} \\ = & \frac{pr(T>t+s)}{pr(T>s)} \end{split}$$

$$T \sim \exp(\lambda)$$

$$\therefore pr(T > t + s | T > s) = \frac{e^{-\lambda(t+s)}}{e^{-\lambda s}}$$
$$= e^{-\lambda t} = R(t)$$
$$= pr(T > t)$$

c)

$$\therefore X \sim \exp(\frac{1}{10000})$$

∴
$$Pr(X>9000) = e^{-0.9}$$

≈ 0.4066