Second Semester	Second Exam	King Saud University		
(without calculators)	Time allowed: 1 h and 30 m	College of Science		
Monday 9-10-1446	240 Math	Math. Department		

Q1: (a) Show that the vector (1,1,1) is not generated by S={(1,2,2), (2,4,8)}. (3 marks)

(b) Let $V=F(-\infty,\infty)$ and W is the set of all functions in V such that f(1)=1 for every f in W. Prove that W is <u>not</u> a subspace of V. (2 marks)

Q2: (a) Use the Wronskian to show that 1, x, e^x are linearly independent in the vector space $C^2(-\infty,\infty)$. (3 marks)

(b) The set $S=\{1+x+2x^2,2+x+x^2,1+x\}$ forms a basis for P_2 . Find the vector w whereas $(w)_S=(1,2,3)$. (2 marks)

Q3: (a) Let $B=\{(1,3),(2,7)\}$ and $B'=\{(1,1),(2,0)\}$ be two bases of \mathbb{R}^2 . Find the transition matrix from B' to B. (3 marks).

(b) Find a basis for the column space of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 2 & 4 & 13 & -1 \\ 3 & 6 & 26 & 5 \end{bmatrix}$$

and <u>deduce</u> nullity(A^{T}) without solving any linear system. (4 marks) Q4: (a) Show that rank(A)=rank(A^{T}) for any matrix A. (1 mark) (b) If S={ $v_1, v_2, ..., v_n$ } is a basis for a vector space V, then prove that every vector v in V can be expressed in the form $v=c_1v_1+c_2v_2+...+c_nv_n$ in exactly one way,

where c₁, c₂, ..., c_n are real numbers. (2 marks)

Q5: Choose the correct answer: (5 marks)

(i) Suppose that $S=\{w_1, w_2, w_3\}$ is a basis of a subspace W of \mathbb{R}^4 . Then dim(W) is

(a) 4 (b) 3 (c) 2 (d) 1 (ii) Which of the following can be considered a transition matrix?

(a) $\begin{bmatrix} 1\\1 \end{bmatrix}$	$\begin{bmatrix} 1\\1 \end{bmatrix}$	(b) $\begin{bmatrix} 1\\2 \end{bmatrix}$	1 2]	(c) $\begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$	2 4 6	(d) $\begin{bmatrix} 1\\3 \end{bmatrix}$	2 4]
--	--------------------------------------	--	---------	---	-------------	--	---------

(iii) Let P_2 be the vector space of all polynomials of degree ≤ 2 and $S=\{v,u\}$ a subset of P_2 . If E is the set of all linear combinations of the vectors in S, Then the set E is:

(a) linearly independent (b) a basis of P_2 (c) spans P_2 (d) a vector space

(iv) Suppose {v₁, v₂, v₃} is a basis of \mathbb{R}^3 . Then $\alpha_1v_1 + \alpha_2v_2 + \alpha_3v_3 = 0$ implies that:

(a)
$$\alpha_1 = \alpha_2 = \alpha_3 = 0$$
 (b) $v_1 = v_2 = v_3 = 0$ (c) $\alpha_1 = v_1$, $\alpha_2 = v_2$, $\alpha_3 = v_3$ (d) $\{v_1, v_2, v_3\} = \mathbb{R}^3$

(v) If $W_1 = \{(2,2,2)\}, W_2 = \{(1,1,1)\}, W_3 = \{(0,0,0)\} and W_4 = \{(1,0,0), (0,1,0), (0,0,1)\}$ are four subsets of \mathbb{R}^3 , which one of them is a subspace of \mathbb{R}^3 ?

(a) W_1 (b) W_2 (c) W_3 (d) W_4

Solutions:

A1(a):

$$\begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 1 \\ 2 & 8 & 1 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & -1 \\ 0 & 4 & -1 \end{bmatrix}$$

So, it has no solution and hence (1,1,1) is not generated by the set $S=\{(1,2,2), (2,4,8)\}$.

A1(b): The zero vector 0 in V does not belong to W since $0(1)=0\neq 1$. A2(a):

$$W(x) = \begin{vmatrix} 1 & x & e^{x} \\ 0 & 1 & e^{x} \\ 0 & 0 & e^{x} \end{vmatrix} = e^{x}$$
$$W(0) = e^{0} = 1 \neq 0$$

So 1, x, e^x are linearly independent.

A2(b):

Since the set $S=\{1+x+2x^2,2+x+x^2,1+x\}$ forms a basis for P_2 , then

$$w = 1(1+x+2x^{2})+2(2+x+x^{2})+3(1+x)$$

=1+x+2x²+4+2x+2x²+3+3x =8+6x+4x²

A3(a):

$$\begin{bmatrix} B & | B &] = \begin{bmatrix} 1 & 2 & | 1 & 2 \\ 3 & 7 & | 1 & 0 \end{bmatrix} \xrightarrow{(-3)R_{12}} \begin{bmatrix} 1 & 2 & | 1 & 2 \\ 0 & 1 & | -2 & -6 \end{bmatrix}$$
$$\xrightarrow{(-2)R_{21}} \begin{bmatrix} 1 & 0 & | 5 & 14 \\ 0 & 1 & | -2 & -6 \end{bmatrix} = \begin{bmatrix} I & | P_{B' \to B} \end{bmatrix}$$
$$P_{B' \to B} = \begin{bmatrix} 5 & 14 \\ -2 & -6 \end{bmatrix}$$

A3(b):

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 2 & 4 & 13 & -1 \\ 3 & 6 & 26 & 5 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 8 & 8 \end{bmatrix} \xrightarrow{(-8)R_{23}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Using the leading ones, $\{[1 \ 2 \ 3]^T, [6 \ 13 \ 26]^T\}$ is a basis of col(A). Now, rank(A)+nullity(A^T)=m

So nullity(A^{T})=m- rank(A)=3-2=1

A4(a): rank(A)=dim(row(A))=dim(col(A^{T}))=rank(A^{T}).

A4(b): Suppose v∈V has two expressions:

 $v = c_1v_1 + c_2v_2 + \cdots + c_nv_n$ and $v = k_1v_1 + k_2v_2 + \cdots + k_nv_n$, so

 $0 = (c_1 - k_1)v_1 + (c_2 - k_2)v_2 + \cdots + (c_n - k_n)v_n$

But S = { $v_1, v_2, ..., v_n$ } is a basis, so it is linearly independent. Thus,

 $c_1-k_1=c_2-k_2=...=c_n-k_n=0$ and hence $c_i=k_i$ for all $i \in \{1,2,...,n\}$ and hence v has exactly one expression.

A5

(i) b

(ii) d

(iii) d

(iv) a

(v) c