Second Semester (without calculators)	Second Exam Time allowed: 1 h and 30 m	King Saud University College of Science

Q1: (a) Find (w)_s, where w=(2,6,2) and S={(1,2,2), (2,4,8), (1,0,0)} a basis of \mathbb{R}^3 . (3 marks)

(b) Let $V=M_{22}$ and W is the set of all diagonal matrices matrices of degree 2. Prove that W is a subspace of V. (3 marks)

Q2: (a) Use the Wronskian to show that 1, e^x , x^3 are linearly independent in the vector space $C^2(-\infty,\infty)$. (2 marks)

(b) show that the set $S=\{(1,1,1), (2,1,2), (1,0,0)\}$ forms a basis for \mathbb{R}^3 . (2 marks)

Q3: (a) If $P = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$. Find two bases B and B' of \mathbb{R}^2 Such that P is the transition matrix from B to B'. (2 marks).

(b) Find a basis for the column space of the matrix:

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 1 & 3 & 6 & 1 \\ 1 & 2 & 6 & 0 \end{bmatrix}$$

and <u>**deduce**</u> rank(A^{T}) without using the matrix A^{T} . (4 marks)

Q4: Let \mathbb{R}^2 be the Euclidean vector space. Show that the function $f:\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ defined by f(u,v)=0 for all $u,v \in \mathbb{R}^2$, is <u>**not**</u> an inner product function. (2 marks)

Q5(a) If $a,b\in\mathbb{R}$, then show that $(a\cos(\theta)+b\sin(\theta))^2 \le a^2+b^2$. (2 marks)

(b) Let $v \in V$, where V is a vector space with a basis $S = \{v_1, v_2\}$. Show that we can write v as a linear combination of the basis vectors in a unique way.

(2 marks)

(c) If u and v are orthogonal in an inner product space, then show that $||u+v||^2 = ||u||^2 + ||v||^2$. (1 mark)

(d) If $||u|| = ||v|| = \langle u, v \rangle = 2$, then compute d(u,v). (2 marks)

Solutions:

A1(a):

$$\begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 4 & 0 & 6 \\ 2 & 8 & 0 & 2 \end{bmatrix} \xrightarrow{(-2)R_{12}} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & -2 & 2 \\ 0 & 4 & -2 & -2 \end{bmatrix} \xrightarrow{-\frac{1}{2}R_2} \begin{bmatrix} 1 & 2 & 1 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 4 & -2 & -2 \end{bmatrix} \xrightarrow{(-1)R_{21}} \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 4 & 0 & -4 \end{bmatrix} \xrightarrow{\frac{1}{4}R_3} \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \xrightarrow{(-2)R_{31}} \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & -1 \end{bmatrix} \xrightarrow{R_{23}} \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{R_{23}} \begin{bmatrix} 1 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\Rightarrow (w)_S = (5, -1, -1)$$

A1(b): For all $A = \begin{bmatrix} a & 0 \\ 0 & a' \end{bmatrix}, B = \begin{bmatrix} b & 0 \\ 0 & b' \end{bmatrix}$ and $k \in \mathbb{R}$: 1- W is not empty since $0 \in W$ 2- $A + B = \begin{bmatrix} a + b & 0 \\ 0 & a' + b' \end{bmatrix}$. So $A + B \in W$. 3- $kA = \begin{bmatrix} ka & 0 \\ 0 & ka' \end{bmatrix}$. So $kA \in W$ 1, 2 and 3 implies that W is a subspace of $V = M_{22}$.

$$W(x) = \begin{vmatrix} 1 & e^{x} & x^{3} \\ 0 & e^{x} & 3x^{2} \\ 0 & e^{x} & 6x \end{vmatrix} = 6xe^{x} - 3x^{2}e^{x}$$
$$W(1) = 6e - 3e = 3e \neq 0$$

So 1, e^x, x³ are linearly independent. A2(b):

$$\begin{vmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \\ 1 & 2 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 2 - 1 = 1 \neq 0$$

So the vectors (1,1,2), (2,1,1), (1,1,0) form a basis for \mathbb{R}^3 .

A3(a): B={(1,1),(1,2)} and B'={(1,0),(0,1)} A3(b):

$$A = \begin{bmatrix} 1 & 2 & 6 & -1 \\ 1 & 3 & 6 & 1 \\ 1 & 2 & 6 & 0 \end{bmatrix} \xrightarrow{(-1)R_{12}} \begin{bmatrix} 1 & 2 & 6 & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Using the leading ones, $\{[1 \ 1 \ 1]^{T}, [2 \ 3 \ 2]^{T}, [-1 \ 1 \ 0]^{T}\}$ is a basis of col(A). Now, rank(A^T)= rank(A) =3.

A4: f((1,1),(1,1)=0, but $(1,1)\neq 0=(0,0)$. So it is not an inner product function.

A5(a): Consider the Euclidean inner product on \mathbb{R}^2 . Take the two vectors u=(a,b) and $v=(\cos(\theta),\sin(\theta))$. By Cauchy-Schwarz Inequality:

 $|<u,v>|\leq ||u|| ||v||$

or equivalently:

$$^{2} \le ||u||^{2} ||v||^{2}$$

So,

$$(a\cos(\theta)+b\sin(\theta))^2 = \langle u,v \rangle^2 \le ||u||^2 ||v||^2 = (a^2+b^2)(\cos^2(\theta)+\sin^2(\theta)) = a^2+b^2$$

A5(b): Suppose $v \in V$ has two expressions:

 $v = c_1v_1 + c_2v_2$ and $v = k_1v_1 + k_2v_2$, so

 $0 = (c_1 - k_1)v_1 + (c_2 - k_2)v_2$

But S = { v_1 , v_2 } is a basis, so it is linearly independent. Thus, c_1 - k_1 = c_2 - k_2 =0 and hence c_1 = k_1 and c_2 = k_2 . Hence v can be written as a linear combination of the basis vectors in a unique way.

A5(c): Since u and v are orthogonal, then <u,v>=0 and hence:

$$\|u+v\|^{2} = \langle u+v, u+v \rangle = \langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$$
$$= \|u\|^{2} + 2\langle u, v \rangle + \|v\|^{2} = \|u\|^{2} + \|v\|^{2}$$

A5(d):

$$(d(u,v))^{2} = ||u-v||^{2} = \langle u-v,u-v \rangle$$
$$= \langle u,u \rangle - 2 \langle u,v \rangle + \langle v,v \rangle = ||u||^{2} - 2 \langle u,v \rangle + ||v||^{2} = 4 - 2(2) + 4 = 4$$

So, d(u,v)=(4)^{0.5}=2.