First Semester	Final Exam	King Saud University							
(without calculators)	Time allowed: 3 hours	College of Science							
Monday 15-6-1446	240 Math	Math. Department							
<u>Q1</u> : If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 4 \\ 4 & 5 \end{bmatrix}$ (i) find the size of B. (1 mark)	$\binom{6}{6}$ such that $AB = C$, then:								
(ii) show that A and C are row of	equivalent. (1 mark)								
Q2 : If $A \in M_{22}$ and det(A)=3, then find:									
(i) $det(A^{T}+A^{T})$. (2 marks)									
(ii) RREF of A. (1 mark)									
(iii) the solution set of the syste	m Ax=0. (1 mark)								
Q3 : Let V=span(S), where S={ v_1 =(1,1,1,0), v_2 =(-2,0,0,2)}.									
(i) <u>Find</u> dim(V). (2 marks)									
(ii) show that u=(−6,0,0,7)∉V. ((2 marks)								
<u>Q4</u> : Let W={(b,b) b∈ \mathbb{R} }. Show that W is	s a <u>subspace</u> of \mathbb{R}^2 . (3 marks)								
Q5 : Let B={(1,0),(1,1)} and B'={u,v} be two bases of \mathbb{R}^2 . If the transition matrix from B' to B is									
$\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$, then find u. (2 marks).									
<u>Q6</u> : Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Show that A is dia	gonalizable and find the matrix	P that diagonalizes A.							
(4 marks).									
Q7: Let A be a square non-zero matrix	of order 3 such that Ax=2x, Ay=3	3y and Az=z where x, y							
and z are column matrices. Then:									
(i) show that A is diagonalizabl	. ,	1							
	alizes A, then find the product	$P^{-1}AP.$ (1 mark)							
(iii) show that A is invertible. (1									
Q8 : Let \mathbb{R}^4 be the Euclidean inner pr									
basis $\{u_1, u_2, u_3, u_4 = (1, 1, 1, 1)\}$ to transfor									
where v_1 =(2,2,1,0), v_2 =(1,-2,2,0) and v_2									
<u>Q9</u> : Let M_{22} be the vector space of so		let T:M ₂₂ $\rightarrow \mathbb{R}^2$ be the							
function defined by $T\begin{pmatrix}a&b\\c&d\end{pmatrix} = (a,a)$	for all $a, b, c, d \in \mathbb{R}$:								

- (i) Show that T is a linear transformation. (2 marks)
- (ii) Find a basis for ker(T). (3 marks)
- (iii) Find $[T]_{B',B}$ where B and B' are the standard bases of M_{22} and \mathbb{R}^2 , respectively. (2 marks)
- (iv) Find rank(T). (1 mark)

<u>Q10</u>: Solve the following:

(i) Consider the Weighted Euclidian inner product on \mathbb{R}^2 defined by:

$<(u_1,u_2),(v_1,v_2)>=2u_1v_1+3u_2v_2$

Find d((1,1),(1,2)). (1 mark)

- (ii) Let *u* and *v* be orthonormal vectors in an inner product space. Find $||2u+3v||^2$. (1 mark)
- (iii) If B is a 5×7 matrix with nullity(B)=4, then find rank(B^{T}). (1 mark)
- (iv) Let $T:\mathbb{R}^3 \to \mathbb{R}^2$ be a matrix transformation. Find the size of its standard matrix. (1 mark)
- (v) Let $\{u,v,w\}$ be a linearly independent subset of a vector space V. Show that $span\{u\}\neq span\{v,w\}$. (1 mark)

<u>Q1</u>: If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 4 & 6 \\ 4 & 5 & 6 \end{bmatrix}$ such that AB = C, then: the size of B. (1 mark) (i)

(ii) Show that A and C are row equivalent. (1 mark)

<u>Answer:</u> (i) Suppose B is of size m×n. Since $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ is of size 2×3 and the product $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} B$ is defined, so m=3. But the product $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} B$ is of size 2×n and is equal to

 $\begin{bmatrix} 2 & 4 & 6 \\ 4 & 5 & 6 \end{bmatrix}$ which is of size 2×3. So, n=3. Hence, B is of size 3×3.

(ii) Since $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \xrightarrow{2R_1} \begin{bmatrix} 2 & 4 & 6 \\ 4 & 5 & 6 \end{bmatrix}$, so A and C are row equivalent.

Q2: If $A \in M_{22}$ and det(A)=3, then find:

- $det(A^{T}+A^{T})$. (2 marks) (i)
- RREF of A. (1 mark) (ii)
- (iii) the solution set of the system Ax=0. (1 mark)

Answer:

- $det(A^{T}+A^{T})=det(2A^{T})=2^{2}det(A^{T})=4det(A)=4(3)=12.$ (i)
- RREF of A is $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ since det(A) $\neq 0$ (by a theorem). (ii)
- x=0 since det(A) \neq 0 (a theorem) OR Since det(A) \neq 0, A is invertible and x=A⁻¹0=0. (iii)
- Q3: Let V=span(S), where S={ v_1 =(1,1,1,0), v_2 =(-2,0,0,2)}.
 - (i) Find dim(V). (2 marks)
 - show that u=(-6,0,0,7)∉V. (2 marks) (ii)

Answer: (i) Since v_1 and v_2 span V and none of them is a scalar multiple of the other, So S is a basis of V and hince dim(V)=2.

(ii) Suppose $u=av_1+bv_2$, where a and b are scalars. So,

[1	-2	-6		1	-2	-6		[1	0	0
1	0	0	$(-1)R_{12}$	0	2	6	$\xrightarrow{1R_{21}}_{(-1)R_{23}}$	0	2 0	6
1	0	0	$(-1)R_{13}$	0	2	6 6	$(-1)R_{24}$	0	0	0
0	2	7		0	2	7		0	0	1

So, u∉V.

<u>Q4</u>: Let W={(b,b)|b $\in \mathbb{R}$ }. Show that W is a **<u>subspace</u>** of \mathbb{R}^2 . (3 marks)

Answer: 1- If b=0, then $(0,0) \in W$. So $W \neq \emptyset$.

2- Take u=(a,a),v=(b,b)∈W. Now, u+v=(a+b,a+b). So u+v∈W.

3- Take $u=(b,b)\in W$ & $k\in\mathbb{R}$. Now, ku=(kb,kb). So $ku\in W$.

1,2 and 3 imply that W is a subspace of \mathbb{R}^2 .

Q5: Let B={(1,0),(1,1)} and B'={u,v} be two bases of \mathbb{R}^2 . If the transition matrix from B' to B is

 $\begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}$, then find u. (2 marks).

Answer:

$$P_{B' \to B} = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} [u]_B & | & [v]_B \end{bmatrix}$$
$$\Rightarrow [u]_B = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$
$$\Rightarrow u = 2(1,0) + 3(1,1) = (2,0) + (3,3) = (5,3)$$

<u>Q6</u>: Let $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$. Show that A is diagonalizable and find the matrix P that diagonalizes A. (4 marks).

Answer: The characteristic equation:

$$0 = \det(\lambda I - A) = \det\left(\begin{bmatrix}\lambda & 0\\0 & \lambda\end{bmatrix} - \begin{bmatrix}2 & 1\\1 & 2\end{bmatrix}\right) = \begin{vmatrix}\lambda - 2 & -1\\-1 & \lambda - 2\end{vmatrix}$$
$$= (\lambda - 2)^2 - 1 = \lambda^2 - 4\lambda + 4 - 3 = \lambda^2 - 4\lambda + 3 = (\lambda - 1)(\lambda - 3)$$

and hence the Eigenvalues are λ =1,3. Since the Eigenvalues are distinct, A is diagonalizable. To find P, take the equation (λ I-A)x=0 and substitute λ =1,3, respectively as follows:

$$\begin{split} \lambda I - A &= \begin{bmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{bmatrix} \\ \lambda &= 1 \Rightarrow (1)I - A = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix} \xrightarrow{(-1)R_{12}} \begin{bmatrix} -1 & -1 \\ 0 & 0 \end{bmatrix} \xrightarrow{(-1)R_1} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \\ \Rightarrow x &= -y = -t \& t = -1 \Rightarrow C_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \\ \lambda &= 3 \Rightarrow (3)I - A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \xrightarrow{(1)R_{12}} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix} \\ \Rightarrow x &= y = t \& t = 1 \Rightarrow C_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \Rightarrow P = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \end{split}$$

<u>Q7</u>: Let A be a square non-zero matrix order 3 such that Ax=2x, Ay=3y and Az=z where x, y and z are column matrices. Then:

(i) show that A is diagonalizable. (2 marks)

(ii) if P is the matrix that diagonalizes A, then find the product $P^{-1}AP$. (1 mark)

(iii) show that A is invertible. (1 mark)

<u>Answer:</u> (i) As Ax=2x, Ay=3y and Az=z, we have $\lambda = 2, \lambda = 3$ and $\lambda = 1$ are the eigenvalues of the matrix A. Since they are distinct, A is diagonalizable.

(ii)
$$P^{-1}AP = D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 (the arrangement of the entries in the main diagonal is not

important).

(iii) Since all the eigenvalues are non-zero, A is invertible (by a theorem)

<u>Q8</u>: Let \mathbb{R}^4 be the Euclidean inner product space. Applying Gram-Schmidt process to the basis {u₁,u₂,u₃,u₄=(1,1,1,1)} to transform it into the following <u>orthogonal basis</u> {v₁,v₂,v₃,v₄} where v₁=(2,2,1,0), v₂=(1,-2,2,0) and v₃=(2,-1,-2,0). Find v₄. (4 marks)

Answer:

$$\begin{split} v_{4} &= u_{4} - \frac{\langle u_{4}, v_{3} \rangle}{\left\|v_{3}\right\|^{2}} v_{3} - \frac{\langle u_{4}, v_{2} \rangle}{\left\|v_{2}\right\|^{2}} v_{2} - \frac{\langle u_{4}, v_{1} \rangle}{\left\|v_{1}\right\|^{2}} v_{1} \\ &= \left(1, 1, 1, 1\right) - \frac{\langle (1, 1, 1, 1), (2, -1, -2, 0) \rangle}{\left\|(2, -1, -2, 0)\right\|^{2}} (2, -1, -2, 0) - \frac{\langle (1, 1, 1, 1), (1, -2, 2, 0) \rangle}{\left\|(1, -2, 2, 0)\right\|^{2}} (1, -2, 2, 0) \\ &- \frac{\langle (1, 1, 1, 1), (2, 2, 1, 0) \rangle}{\left\|(2, 2, 1, 0)\right\|^{2}} (2, 2, 1, 0) = \left(1, 1, 1, 1\right) - \frac{-1}{9} (2, -1, -2, 0) - \frac{1}{9} (1, -2, 2, 0) - \frac{5}{9} (2, 2, 1, 0) \\ &= \left(1 - \frac{-2}{9} - \frac{1}{9} - \frac{10}{9}, 1 - \frac{1}{9} - \frac{-2}{9} - \frac{10}{9}, 1 - \frac{2}{9} - \frac{2}{9} - \frac{5}{9}, 1 - 0 - 0 - 0\right) = (0, 0, 0, 1) \end{split}$$

Q9: Let M₂₂ be the vector space of square matrices of order 2, and let T: M₂₂ $\rightarrow \mathbb{R}^2$ be the function defined by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = (a, a)$ for all $a, b, c, d \in \mathbb{R}$:

- (i) Show that T is a linear transformation. (2 marks)
- (ii) Find a basis for ker(T). (3 marks)
- (iii) Find $[T]_{B',B}$ where B and B' are the standard bases of M_{22} and \mathbb{R}^2 , respectively. (2 marks)
- (iv) Find rank(T). (1 mark)

Answer: For all
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $B = \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix} \in M_{22}$, $k \in \mathbb{R}$:
(i) 1- T(A+B)= $T \begin{bmatrix} a+a' & b+b' \\ c+c' & d+d' \end{bmatrix} = (a+a', a+a') = (a, a) + (a'+a') = T(A)+T(B)$
2- T(kA)= $T \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix} = (ka, ka) = k(a, a) = kT(A)$
So T is linear.

(ii) ker(T)={A ∈ M₂₂ | T(A)=0}={
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} ∈ M_{22} | (a, a) = (0,0)}$$
}
={ $\begin{bmatrix} 0 & b \\ c & d \end{bmatrix} ∈ M_{22} | b, c, d ∈ ℝ$ } = { $b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} | b, c, d ∈ ℝ$ }
So, the set $S = {\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ spans ker(T). Observe that
 $b \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + c \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + d \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

implies that

$$\begin{bmatrix} 0 & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

and hence b=c=d=0. So, S is linearly independent also. Thus, S is a basis of ker(T). (iii) $T\left(\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}\right) = (1,1), T\left(\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\right) = (0,0), T\left(\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\right) = (0,0) \text{ and } T\left(\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right) = (0,0).$

Now, $\begin{bmatrix} T\left(\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix}\right)\end{bmatrix}_{B'} = \begin{bmatrix}1\\1\end{bmatrix}, \begin{bmatrix} T\left(\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix}\right)\end{bmatrix}_{B'} = \begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix} T\left(\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix}\right)\end{bmatrix}_{B'} = \begin{bmatrix}0\\0\end{bmatrix}, \begin{bmatrix} T\left(\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right)\end{bmatrix}_{B'} = \begin{bmatrix}0\\0\end{bmatrix}.$

Therefore,
$$[T]_{B',B} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
.

(iv) Since dim(ker(T))=3, so nullity(T)=3 and hence rank(T)=dim(M₂₂)-nullity(T)=4-3=1.

Q10: Solve the following:

(i) Consider the Weighted Euclidian inner product on \mathbb{R}^2 defined by:

 $<(u_1,u_2),(v_1,v_2)>=2u_1v_1+3u_2v_2$

Find d((1,1),(1,2)). (1 mark)

- (ii) Let *u* and *v* be orthonormal vectors in an inner product space. Find $||2u+3v||^2$. (1 mark)
- (iii) If B is a 5×7 matrix with nullity(B)=4, then find rank(B^{T}). (1 mark)
- (iv) Let $T: \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be a matrix transformation. Find the size of its standard matrix. (1 mark)
- (v) Let {u,v,w} be a linearly independent subset of a vector space V. Show that span{u}≠span{v,w}. (1 mark)

<u>Answer:</u> (i) d((1,1),(1,2))= $\|(1,1)-(1,2)\|=\|(0,-1)\|=(2(0)^2+3(1)^2)^{0.5}=\sqrt{3}$. <u>Answer:</u> (ii) $\|2u+3v\|^2=<2u+3v,2u+3v>=4<u,u>+6<u,v>+6<v,u>+9<v,v>=4+9=13$ since <u,v>=<v,u>=0 and <u,u>=<v,v>=1.

Answer: (iii) rank(B^T)=rank(B)=7- nullity(B)= 7-4=3

<u>Answer:</u> (iv) The size is 2×3 .

Answer: (v) Since $\{u,v,w\}$ is a linearly independent subset, so dim(span $\{u\}$)=1 \neq 2=dim(span $\{v,w\}$) and hence span $\{u\}\neq$ span $\{v,w\}$.