Second Semester	Final Exam	King Saud University
(without calculators)	Time allowed: 3 hours	College of Science
Thursday 29-11-1445	240 Math	Math. Department

<u>Q1</u>: Find the inverse of $A = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}$. (2 marks)

<u>Q2</u>: If A,B \in M₂₂, det(B)=2 and det(A)=3, then find det(2A^TB⁻¹). (2 marks)

<u>Q3</u>: Let V be the subspace of \mathbb{R}^4 **<u>spanned</u>** by the set S={v₁=(1,1,1,0), v₂=(-1,0,0,1), v₃=(2,2,2,0), v₄=(-5,-4,-4,1)}.

(i) Find a <u>subset</u> of S that forms a basis of V. (3 marks)

(ii) show that u=(-6,0,0,7)∉V. (2 marks)

<u>Q4</u>: Let W={(a,a+1) $\in \mathbb{R}^2 | a \in \mathbb{R}$ }. Show that W is <u>not a subspace</u> of \mathbb{R}^2 . (2 marks)

Q5: Let B={(1,2),(1,1)} and B'={u,v} be two bases of \mathbb{R}^2 . If the transition matrix from B' to B is $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, then find u. (2 marks).

<u>Q6</u>: Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Show that A is diagonalizable and find the matrix P that diagonalizes A. (6 marks)

Q7: Let \mathbb{R}^3 be the Euclidean inner product space. Apply the Gram-Schmidt process to transform the following basis {u₁=(0,1,-1),u₂=(0,5,3),u₃=(1,0,0)} into an <u>orthonormal basis</u>. (6 marks)

<u>Q8</u>: Let M_{22} be the vector space of square matrices of order 2, and let $T:M_{22} \rightarrow \mathbb{R}^2$ be the function defined by $T(A)=0\in\mathbb{R}^2$ for all $A\in M_{22}$. Show that:

(i) T is a linear transformation. (2 marks)

(ii) Find a basis for ker(T). (2 marks)

- (iii) Find $[T]_{S,B}$ where B and S are the standard bases of M_{22} and \mathbb{R}^2 , respectively. (3 marks)
- (iv) Find rank(T). (1 mark)

<u>Q9</u>: If A is a matrix such that $A \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$ and $A \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -c \\ -d \end{bmatrix}$, where *a*, *b*, *c* and *d* are real numbers such that $ad \neq bc$, then:

(i) Show that A is diagonalizable. (2 marks)

- (ii) Show that A is invertible. (1 mark)
- (iii) Show that $A^2=I$. (2 marks)

Q10: Let V be an inner product space. If u and v are orthonormal vectors in V, then find d(u,v). (2 marks)

<u>Q1</u>: Find the inverse of $A = \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}$. (2 marks)

Answer:

$$\begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}^{-1} = \frac{1}{6-4} \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 3 & -2 \\ -2 & 2 \end{bmatrix} = \begin{bmatrix} \frac{3}{2} & -1 \\ -1 & 1 \end{bmatrix}$$

Q2: If $A, B \in M_{22}$, det(B)=2 and det(A)=3, then find det($2A^{T}B^{-1}$). (2 marks) Answer: det($2A^{T}B^{-1}$)= 2^{2} det(A^{T})det(B^{-1})=4det(A)(det(B))⁻¹=4(3)(1/2)=6.

Q3: Let V be the subspace of \mathbb{R}^4 **spanned** by the set S={v₁=(1,1,1,0), v₂=(-1,0,0,1), v₃=(2,2,2,0), v₄=(-5,-4,-4,1)}.

(i) Find a subset of S that forms a basis of V. (3 marks)

(ii) show that u=(-6,0,0,7)∉V. (2 marks)

Answer: (i) Putting the vectors as columns in the following matrix:

[1	-1	2	-5		1	-1	2	-5]		[1	-1	2	-5
1	0	2	-4	$(-1)R_{12}$	0	1	0	1	$(-1)R_{23}$	0	1	0	1
1	0	2	-4	$(-1)R_{13}$	0	1	0	1	$(-1)R_{24}$	0	0	0	0
0	1	0	1		0	1	0	1		0	0	0	0

So, $S=\{v_1, v_2\}$ is a basis of V.

(ii) Suppose $u=av_1+bv_2$, where a, b and c are scalars. So,

[1	-1	-6		[1	-1	-6		[1	0	0	
1	0	0	$(-1)R_{12}$	0	1	6	$\frac{1R_{21}}{(-1)R_{23}}$	0	1	6	
1	0	0	$(-1)R_{13}$	0	1	6	$(-1)R_{24}$	0	0	0	
0	1	7		0	1	7		0	0	1	

So, it has no solution and hence $u \notin V$.

<u>Q4</u>: Let W={(a,a+1) $\in \mathbb{R}^2 | a \in \mathbb{R}$ }. Show that W is **<u>not a subspace</u>** of \mathbb{R}^2 . (2 marks)

<u>Answer:</u> since (1,2) belongs to W, but 3(1,2)=(3,6) doesn't belong to W, so W is not a subspace of \mathbb{R}^2 .

Q5: Let B={(1,2),(1,1)} and B'={u,v} be two bases of \mathbb{R}^2 . If the transition matrix from B' to B is $\begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix}$, then find u. (2 marks).

Answer:

$$P_{B' \to B} = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} [u]_B & | & [v]_B \end{bmatrix}$$
$$\Rightarrow [u]_B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
$$\Rightarrow u = (1)(1,2) + (2)(1,1) = (1,2) + (2,2) = (3,4)$$

<u>Q6</u>: Let $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$. Show that A is diagonalizable and find the matrix P that diagonalizes A. (6 marks)

Answer: Observe that:

$$0 = \det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{vmatrix}$$

= $(\lambda - 1)^2 - 4 = \lambda^2 - 2\lambda + 1 - 4$
= $\lambda^2 - 2\lambda - 3 = (\lambda - 3)(\lambda + 1)$

So, $\lambda = -1$ and $\lambda = 3$ are the eigenvalues of A and since they are different, A is diagonalizable. Now, we will find the eigenvectors by the equation $(\lambda I - A)x = 0$. When $\lambda = -1$, observe that

$$\begin{bmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{bmatrix} = \begin{bmatrix} -2 & -2 \\ -2 & -2 \end{bmatrix} \xrightarrow{(-1)R_{12}} \begin{bmatrix} -2 & -2 \\ 0 & 0 \end{bmatrix} \xrightarrow{(-\frac{1}{2})R_1} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$

So, x = -y = -t, where $t \in \mathbb{R}$ and (x, y) = (-t, t) = t(-1, 1). Hence, (-1, 1) is an eigenvector of A corresponding to $\lambda = -1$. When $\lambda = 3$, observe that

$$\begin{bmatrix} \lambda - 1 & -2 \\ -2 & \lambda - 1 \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} \xrightarrow{1R_{12}} \begin{bmatrix} 2 & -2 \\ 0 & 0 \end{bmatrix} \xrightarrow{\left(\frac{1}{2}\right)R_1} \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$

So, x = y = t, where $t \in \mathbb{R}$ and (x, y) = (t, t) = t(1, 1). Hence, (1, 1) is an eigenvector of A corresponding to $\lambda = 3$. Therefore,

$$P = \begin{bmatrix} -1 & 1\\ 1 & 1 \end{bmatrix}$$

Q7: Let \mathbb{R}^3 be the Euclidean inner product space. Apply the Gram-Schmidt process to transform the following basis {u₁=(0,1,-1),u₂=(0,5,3),u₃=(1,0,0)} into an <u>orthonormal basis</u>. (6 marks)

Answer:

$$\begin{split} & u_1 = (0,1,-1), u_2 = (0,5,3), u_3 = (1,0,0), \\ & v_1 = u_1 = (0,1,-1) \\ & v_2 = u_2 - \frac{< u_2, v_1 >}{\left\| v_1 \right\|^2} v_1 \\ & = (0,5,3) - \frac{< (0,5,3), (0,1,-1) >}{\left\| (0,1,-1) \right\|^2} (0,1,-1) = (0,5,3) - \frac{2}{2} (0,1,-1) \\ & = (0,5,3) - (0,1,-1) = (0,4,4) \\ & v_3 = u_3 - \frac{< u_3, v_2 >}{\left\| v_2 \right\|^2} v_2 - \frac{< u_3, v_1 >}{\left\| v_1 \right\|^2} v_1 \\ & = (1,0,0) - \frac{< (1,0,0), (0,1,-1) >}{\left\| (0,1,-1) \right\|^2} (0,1,-1) - \frac{< (1,0,0), (0,4,4) >}{\left\| (0,4,4) \right\|^2} (0,4,4) \\ & = (1,0,0) - \frac{2}{2} (0,1,-1) - \frac{0}{18} (0,4,4) = (1,0,0) \\ & w_1 = \frac{v_1}{\left\| v_1 \right\|} = \frac{1}{\sqrt{2}} (0,1,-1) \\ & w_2 = \frac{v_2}{\left\| v_2 \right\|} = \frac{1}{\sqrt{32}} (0,4,4) = \frac{1}{4\sqrt{2}} (0,4,4) = \frac{1}{\sqrt{2}} (0,1,1) \\ & w_3 = \frac{v_3}{\left\| v_3 \right\|} = (1,0,0) \end{split}$$

<u>Q8</u>: Let M_{22} be the vector space of square matrices of order 2, and let T: $M_{22} \rightarrow \mathbb{R}^2$ be the function defined by $T(A)=0\in\mathbb{R}^2$ for all $A\in M_{22}$. Show that:

(i) T is a linear transformation. (2 marks)

(ii) Find a basis for ker(T). (2 marks)

(iii) Find $[T]_{S,B}$ where B and S are the standard bases of M_{22} and \mathbb{R}^2 , respectively. (3 marks)

(iv) Find rank(T). (1 mark)

<u>Answer</u>: For all A, B \in M₂₂, $k \in \mathbb{R}$:

(i) 1-T(A+B)=0=0+0=T(A)+T(B)

So T is linear.

(ii) ker(T)= $A \in M_{22} | T(A)=0 = M_{22}$

So, the set $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ which is the standard basis of M₂₂ is a basis of ker(T). (iii) $T\left(\begin{bmatrix} 1 & 0\\ 0 & 0 \end{bmatrix}\right) = (0,0), T\left(\begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix}\right) = (0,0), T\left(\begin{bmatrix} 0 & 0\\ 1 & 0 \end{bmatrix}\right) = (0,0) \text{ and } T\left(\begin{bmatrix} 0 & 0\\ 0 & 1 \end{bmatrix}\right) = (0,0).$ Now, $\begin{bmatrix} T\left(\begin{bmatrix}1 & 0\\ 0 & 0\end{bmatrix}\right)\end{bmatrix}_{S} = \begin{bmatrix}0\\ 0\end{bmatrix}, \begin{bmatrix} T\left(\begin{bmatrix}0 & 1\\ 0 & 0\end{bmatrix}\right)\end{bmatrix}_{S} = \begin{bmatrix}0\\ 0\end{bmatrix}, \begin{bmatrix} T\left(\begin{bmatrix}0 & 0\\ 1 & 0\end{bmatrix}\right)\end{bmatrix}_{S} = \begin{bmatrix}0\\ 0\end{bmatrix}, \begin{bmatrix} T\left(\begin{bmatrix}0 & 0\\ 0 & 1\end{bmatrix}\right)\end{bmatrix}_{S} = \begin{bmatrix}0\\ 0\end{bmatrix}$ Therefore, $[T]_{S,B} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$. (iv) Since dim(ker(T))=dim(M₂₂)=4, so nullity(T)=4 and hence $rank(T)=dim(M_{22})-nullity(T)=4-4=0.$ **Q9**: If A is a matrix such that $A \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$ and $A \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} -c \\ -d \end{bmatrix}$, where a, b, c and d are real numbers such that $ad \neq bc$, then: (i) Show that A is diagonalizable. (2 marks) (ii) Show that A is invertible. (1 mark) (iii) Show that A²=I. (2 marks) <u>Answer:</u> (i) Since $A \begin{bmatrix} a \\ b \end{bmatrix} = 1 \begin{bmatrix} a \\ b \end{bmatrix}$ and $A \begin{bmatrix} c \\ d \end{bmatrix} = (-1) \begin{bmatrix} c \\ d \end{bmatrix}$, so 1 and -1 are two eigenvalues of A. But from the products of the matrices, A is of size 2×2. Hence, it should have at most two eigenvalues. Since the eigenvalues are different, A is diagonalizable. (ii) Since the eigenvalues are non-zero, A is invertible (in fact, det(A)=1(-1)=-1). (in fact, we don't need the condition $ad \neq bc$, but to make the parts independent from each other) <u>It can be solved by another way</u>: $A \begin{bmatrix} a \\ b \end{bmatrix} = 1 \begin{bmatrix} a \\ b \end{bmatrix}$ and $A \begin{bmatrix} c \\ d \end{bmatrix} = (-1) \begin{bmatrix} c \\ d \end{bmatrix}$ implies that: $A\begin{bmatrix}a & c\\b & d\end{bmatrix} = \begin{bmatrix}a & -c\\b & -d\end{bmatrix}$

As $ad \neq bc$ then $det \begin{bmatrix} a & -c \\ b & -d \end{bmatrix} \neq 0$ and hence $det(A) det \begin{bmatrix} a & c \\ b & d \end{bmatrix} \neq 0$. Therefore, $|A| \neq 0$ and A is invertible.

(iii) A is diagonalizable, so there exists an invertible matrix P such that $P^{-1}AP=D=\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Thus, $A=PDP^{-1}$ and hence $A^2=PD^2P^{-1}=PIP^{-1}=I$. (in fact, we don't need the condition $ad \neq bc$, but to make the parts independent from each other)

It can be solved by another way: As
$$ad \neq bc$$
 then $det \begin{bmatrix} a & c \\ b & d \end{bmatrix} \neq 0$ and hence

$$A \begin{bmatrix} a & c \\ b & d \end{bmatrix} = \begin{bmatrix} a & -c \\ b & -d \end{bmatrix} \Rightarrow A = \begin{bmatrix} a & -c \\ b & -d \end{bmatrix} \begin{bmatrix} a & c \\ b & d \end{bmatrix}^{-1}$$

$$= \frac{1}{ad - bc} \begin{bmatrix} a & -c \\ b & -d \end{bmatrix} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} = \frac{1}{ad - bc} \begin{bmatrix} ad + bc & -2ac \\ 2bd & -ad - bc \end{bmatrix}$$

$$\Rightarrow A^{2} = \left(\frac{1}{ad - bc}\right)^{2} \begin{bmatrix} ad + bc & -2ac \\ 2bd & -ad - bc \end{bmatrix}^{2}$$

$$= \left(\frac{1}{ad - bc}\right)^{2} \begin{bmatrix} (ad + bc)^{2} - 4abcd & -2ac(ad + bc) + 2a(ad + bc) \\ 2bd(ad + bc) - 2bd(ad + bc) & (ad + bc)^{2} - 4abcd \end{bmatrix}$$

$$= \left(\frac{1}{ad - bc}\right)^{2} \begin{bmatrix} (ad - bc)^{2} & 0 \\ 0 & (ad - bc)^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Q10: Let V be an inner product space. If u and v are orthonormal vectors in V, then find d(u,v). (2 marks)

Answer: $d(u,v)^2 = ||u-v||^2 = \langle u-v,u-v \rangle = \langle u,u \rangle - 2 \langle u,v \rangle + \langle v,v \rangle = ||u||^2 + ||v||^2 = 1 + 1 = 2$, Since $\langle u,v \rangle = 0$. So, $d(u,v) = (2)^{0.5} = \sqrt{2}$.