EXERCISE SHEET \#2

MATH 111 and MATH 106 Exercises

Note: These exercises will be discussed in the tutorial lecture, but you are advised to solve the exercises at the end of each section in the book.

Chapter 5

5.1:

1. Let R be the region bounded by the graphs of the following functions. Sketch R and find its area.
(a) $y=x^{2}-1, y=\frac{1}{5} x^{2}$
(b) $y=9-x^{2}, y=3-x$
(c) $y=x^{2}, y=x-1,2 \leq x \leq 4$
(d) $y=x^{2}, y=2-x^{2}$
(e) $y=x^{2}, y=\sqrt{x}$
(f) $y=\sin x, y=\cos x, 0 \leq x \leq \pi$
(g) $y=e^{x}, y=e^{-x}, y=0,-1 \leq x \leq 1$
(h) $2 y^{2}=x+4, y^{2}=x$
2. Sketch and find the area of the region bounded by the given curves. Choose the variable of integration so that the area is written as a single integral
(a) $y=2 x, y=3-x^{2}, x=0$ in the first quadrant
(b) $x=3 y, x=2+y^{2}$

5.2:

1. Let R be the region bounded by the graphs of the following functions. Sketch R and find the volume of the solid resulting by revolving R about the indicated axis
(a) $y=x^{2}, y=4-x^{2}, x$-axis
(b) $y=x, x+y=4, x=0, \quad x$-axis
(c) $y=x, x+y=4, x=0, \quad y$-axis
(d) $y=x^{2}, y=2, \quad y$-axis
(e) $x^{2}=y-2,2 y-x=2, x=0, x=1, \quad x$-axis
(f) $y=x^{2}, y=x+2, x$-axis
(g) $y=e^{x}, x=0, x=2, y=0, \quad y$-axis

5.3:

1. Let \mathbf{R} be the region bounded by the graph of $y=\sqrt{x-1}, x=10$ and $y=0$. Sketch \mathbf{R} and find the volume of the solid generated by revolving \mathbf{R} about the y-axis using
(a) Method of washers.
(b) Method of cylindrical shells.
2. Let \mathbf{R} be the region bounded by $y=\sqrt{x}, x$-axis and the line $x=4$. Sketch \mathbf{R} and set up the integral for the volume of the solid resulting by revolving \mathbf{R} about
(a) The x-axis.
(b) The y-axis
3. Sketch the region, draw in a typical shell, identify the radius and height of each shell and compute the volume
(a) The region bounded by $y=x, y=-x$, and $x=1$, revolved about the y-axis.
(b) The region bounded by $y=x^{2}$ and $y=2-x^{2}$ revolved about the y-axis.
(c) The region bounded by $x=y^{2}$ and $x=4$ revolved about the x-axis.
4. Use the best method available to find each volume
(a) The region bounded by $y=x+2, y=-x-2$, and $x=0$ revolved about
(i) The x-axis
(ii) The y-axis
(b) The region bounded by $y=2-x^{2}, y=x$ and $x=0$ in the first quadrant, revolved about
(i) The x-axis
(ii) The y-axis

5.4:

1. Compute the arc length of $f(x)=2 x+1$ on $[0,2]$
2. Compute the arc length of $f(x)=\frac{2}{3} x^{\frac{3}{2}}$ on $[0,1]$
3. Compute the arc length of $f(x)=\frac{1}{4}\left(e^{2 x}+e^{-2 x}\right)$ on $[0,1]$
4. Compute the arc length of $f(x)=\frac{1}{6} x^{3}+\frac{1}{2 x}$ on $[1,3]$
5. Compute the arc length of $y=\ln (\sin x)$ from $x=\frac{\pi}{6}$ to $x=\frac{\pi}{2}$.
6. Compute the surface area of the solid resulting when $f(x)=2 \sqrt{x+1}$ is revolved about the x-axis on $[0,3]$
7. Set up the integral for finding the surface area of the solid obtained by revolving the curve $y=\sqrt{4-x^{2}}, x \in[-2,2]$ about the x-axis.
8. Set up the integral for finding the surface area of the solid obtained by revolving the curve $y=\ln x, x \in[1,2]$ about the x-axis.

Set up the integral for finding the surface area of the solid obtained by revolving the curve $y=2 x-x^{2}, x \in[0,2]$ about the x-axis.

Chapter 9

9.1:

1. Sketch the plane curve defined by the given parametric equations and find a corresponding $x-y$ equation for the curve
(a) $x=3 \sin t, y=2 \cos t, 0 \leq t \leq 2 \pi$
(b) $x=2+\cos (2 t), y=-1+\sin (2 t), 0 \leq t \leq \pi$
(c) $x=t^{2}, y=2 \ln t, t>0$
(d) $x=3+2 t, y=1-t, 0 \leq t \leq 1$
(e) $x=1+t, y=t^{2}+2, t \in \mathfrak{R}$
(f) $x=e^{t}, y=e^{2 t}, t \in \mathfrak{R}$
2. Find the parametric equations describing the following
(a) The line segment from $(3,1)$ to $(1,3)$
(b) The line segment from $(4,-2)$ to $(2,-1)$
(c) The portion of the parabola $y=x^{2}+1$ from $(1,2)$ to $(2,5)$
(d) The circle of radius 2 centered at $(-1,3)$ drawn counterclockwise
3. Find all points of intersection of the two curves
(a) $x=t^{2}, y=t+1$ and $x=2+s, y=1-s$
(b) $x=t+3, y=t^{2}$ and $x=1+s, y=2-s$
9.4:
4. Sketch the graph of the following polar equations
(a) $r=3$
(b) $r=-3$
(c) $\theta=\frac{\pi}{6}$
(d) $\theta=-\frac{\pi}{6}$
(e) $r=3 \cos \theta$
(f) $r=6 \sin \theta$
5. Plot the given polar points (r, θ) and find their rectangular representation (x, y)
(a) $(5,0)$
(b) $(5, \pi)$
(c) $(3,-\pi)$
(d) $(-3, \pi)$
(e) $\left(3, \frac{\pi}{2}\right)$
(f) $\left(-3, \frac{3 \pi}{2}\right)$
(g) $\left(2, \frac{-\pi}{3}\right)$
(h) $(-2,1)$
6. Find all polar coordinate representations of the given rectangular point
(a) $(1,2)$
(b) $(-1,1)$
(c) $(3,-3)$
(d) $(-1,-\sqrt{3})$
7. Sketch the graph of the following polar equations and find the area of the region bounded by such a graph, where $\theta \in[0,2 \pi]$
(a) $r=\cos (2 \theta)$
(b) $r=\sin (2 \theta)$
(c) $r=\cos (3 \theta)$
(d) $r=-2+2 \cos \theta$
(e) $r=4+2 \cos \theta$
(f) $r=3+6 \cos \theta$
(g) $r=2-4 \sin \theta$
(h) $r=3+2 \sin \theta$
8. Find a polar equation corresponding to the following rectangular equations
(a) $\frac{y}{x}=1, x \neq 0$.
(b) $4 x \sqrt{x^{2}+y^{2}}=6 y,(x, y) \neq(0,0)$
9. Find a rectangular equation corresponding to the following polar equations
(a) $r^{2} \sin (2 \theta)=1$
(b) $r=2 \sec \theta$
10. Solve the following equations for $\theta, \theta \in[0,2 \pi]$
(a) $\cos \theta=\sin \theta$
(b) $1-2 \sin \theta=2 \cos \theta$
