Name of the Student:	I.D. No	
Name of the Student:	I.D. No	_

Note: Check the total number of pages are Seven (7). (11 Multiple choice questions and Three (3) Full questions)

The Answer Tables for Q.1 to Q.11 : Marks: 2 for each one $(2 \times 11 = 22)$

Ps. : Mark {a, b, c or d} for the correct answer in the box.											
Q. No.	1	2	3	4	5	6	7	8	9	10	11
a,b,c,d											

Quest. N	No.	Ν	Aarks O	btained	d	Marks	s for Qı	lestion	

Quest. No.	Marks Obtained	Marks for Question
Q. 1 to Q. 11		22
Q. 12		6
Q. 13		6
Q. 14		6
Total		40

Question 1: The value of k which insures rapid convergence of $x_{n+1} = x_n + k(x_n^2 - 5)$ to $\alpha = \sqrt{5}$ is:

(a)
$$\frac{1}{2\sqrt{5}}$$
 (b) $-\frac{1}{2\sqrt{5}}$ (c) $-\frac{1}{2\sqrt{3}}$ (d) None of These

Question 2: The first approximation using Secant method of the intersection of $f_1(x) = x^3 + 2x - 1$ and $f_2(x) = \sin x$ with $x_0 = 0.5$ and $x_1 = 0.55$ is:

(a) 0.8606 (b) 0.6608 (c) 0.6806 (d) None of These

Question 3: Let $A = \begin{pmatrix} -4 & 6 \\ -2 & 2 \end{pmatrix}$, then the matrix L of the LU factorization using Crout's method is:

(a)
$$L = \begin{pmatrix} 4 & 0 \\ 2 & -1 \end{pmatrix}$$
 (b) $L = \begin{pmatrix} 1 & 0 \\ -1/2 & 1 \end{pmatrix}$ (c) $L = \begin{pmatrix} -4 & 0 \\ -2 & -1 \end{pmatrix}$ (d) None of These

Question 4: The first approximation for solving linear system $A\mathbf{x} = [1,3]^T$ using Jacobi iterative method with $A = \begin{pmatrix} -4 & 5 \\ 1 & 2 \end{pmatrix}$ and $\mathbf{x}^{(0)} = [0.5, 0.5]^T$ is:

(a) $[1.375, 1.315]^T$ (b) $[0.375, 1.250]^T$ (c) $[1.375, 1.250]^T$ (d) None of These

- Question 5: If $x^* = [0.5, 0.0]^T$ is an approximate solution for the system 2x y = 1, x + y = 2, then the l_{∞} -norm of the corresponding residual vector is:
 - (a) 1.5 (b) 0.5 (c) 0.25 (d) None of These

Question 6: Using data points: (0, -2), (0.1, -1), (0.15, 1), (0.2, 2), (0.3, 3),if $\max_{0 \le x \le 0.3} f^{(5)}(x) = 1$, then the error bound in approximating f(0.25) by using a fourth degree interpolating polynomial is bounded by:

- (a) 7.8×10^{-8} (b) 7.8×10^{-7} (c) 1.56×10^{-6} (d) None of These
- Question 7: Using linear spline which interpolates f(2.5) using data: (1,35), (2,40), (3,65), (4,72) is:
 - (a) 62.50 (b) 52.50 (c) 50.50 (d) None of These
- Question 8: If $f(x) = x^2 + \cos x$, then best approximation of f'(1) with stepsize h = 0.1 using three-point central difference formula is:
 - (a) 1.1605 (b) 1.1585 (c) 1.1599 (d) None of These

Question 9: If f(0) = 3, $f(1) = \frac{\alpha}{2}$, $f(2) = \alpha$, and Simpson's rule for $\int_0^2 f(x) dx$ gives 2, then the value of α is:

Question 10: Given xy' + y = 1, y(1) = 0, the approximate value of y(2) using Euler's method when n = 2 is:

(a) 0.3333 (b) 0.6667 (c) 0.1667 (d) None of These

Question 11: The absolute error by using the Taylor's method of order 2 of y(1) where 4y' - y = 0, y(0) = 1, n = 2, and exact solution $y(x) = e^{x/4}$, is:

(a) 0.0080 (b) 0.0008 (c) 0.1512 (d) None of These

Question 12: If $f(x) = \ln(x+2)$ and $x_0 = -1.5$, $x_1 = 0$, $x_2 = 1$, $x_3 = 2$, $x_4 = 3$, $x_5 = 4.5$, then find the best approximation of $\ln(3.5)$ by the cubic Newton's polynomial using approximation by quadratic Newton's polynomial equal to 1.2573. Compute the absolute error and an error bound for the approximation of $\ln(3.5)$ by the cubic Newton's polynomial.

Question 13: Let $f(x) = \frac{3^x}{x}$. Find the approximation of f''(x) at x = 3, taking h = 0.1 using three-point central difference formula. Compute the absolute error and an error bound for your approximation if $M = \max_{2.9 \le x \le 3.1} |f^{(4)}| = 6.1022$. How many subintervals required to obtain the approximate value of f''(3) within the accuracy 10^{-4} .

Question 14: Find the approximation of $\int_{1}^{2} f(x) dx$, by the best composite integration rule using the following table:

x	1.0	1.11	1.2	1.32	1.4	1.5	1.6	1.73	1.8	1.9	2.0
f(x)	0.3679	0.3658	0.3614	0.3526	0.3452	0.3347	0.3230	0.3067	0.2975	0.2842	0.2707

The function tabulated is $f(x) = xe^{-x}$, compute an error bound and the number of subintervals to approximate the given integral to an accuracy of at least 10^{-6} ?

•