King Saud University
Department of Mathematics
$1^{\text {st }}$ Semester 1445 H

Name		ID	

Question Number	I	II	III	IV	V	VI	Total
Mark							

[I] Let $f(x, y)=e^{2 x} \sin (x y)$. If $g(u, v)=f(u+v, u-v)$, Find $g_{u v}$
[II] Let $f(x, y)=\left\{\begin{array}{cl}\frac{y(x+1)^{2}+y^{2} \sin (\pi x)}{(x+1)^{2}+y^{2}}, & (x, y) \neq(-1,0) \\ 0, & (x, y)=(-1,0)\end{array}\right.$

1. Show that f is continuous at the point $(-1,0)$
2. Find $f_{y}(-1,0)$
3. Find $f_{x}(0,1)$
[III] Use Lagrange multipliers to find the extrema of $f(x, y, z)=x^{2}+(y-2)^{2}+(z-3)^{2}$ subject to the constraint $x^{2}+2 y+2 z=22$
4. Reverse the order and Evaluate the integral $\int_{0}^{4} \int_{\sqrt{y}}^{2} 3 \sqrt{1+x^{3}} d x d y$
5. Find the volume of the solid outside the cone $\mathbf{z}=\mathbf{6} \sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}}$ and inside the cylinder $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=\mathbf{4}$ that is bounded below by the plane $\mathbf{z}=\mathbf{0}$
6. Evaluate the integral $\iiint_{Q} 2 z d v$ where Q is the solid bounded above by the sphere $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+z^{2}=\mathbf{9}$ and below by the plane $\mathbf{z}=\mathbf{0}$
[V] Determine whether the following series is absolutely convergent, conditionally convergent or divergent. Justify your answer.
7. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{2+n}}$
8. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{1+n \sqrt{n}}$
9. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+1}{(2 n-3)^{2}}$
10. Find the interval and the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(2 x-6)^{n}}{n 5^{n}}
$$

2. Find a power series representation for $f(x)=e^{1+2 x}$
3. Find the Taylor series for $f(x)=x \sin 2 x$ and use it to approximate $\int_{0}^{0.5} x \sin 2 x d x$ to 3- decimal places
