

King Saud University
Department of Mathematics
1 st Semester 1445 H

MATH 201 (Differential and Integral Calculus) Final Exam

Duration: 3 Hours

Name					ID			
Question Number	I	II	III	IV		V	VI	Total
Mark								

[I] Let $f(x, y) = e^{2x} \sin(xy)$. If g(u, v) = f(u + v, u - v), Find g_{uv}

[4 Points]

[II] Let $f(x, y) = \begin{cases} \\ \\ \\ \end{cases}$	$\left\{\frac{y(x+1)^2 + y^2 \sin(\pi x)}{(x+1)^2 + y^2},\right.$	$(x,y) \neq (-1,0)$	[7 Points]
	(0,	(x,y)=(-1,0)	

- 1. Show that f is continuous at the point (-1,0)
- 2. Find $f_y(-1,0)$
- 3. **Find** $f_x(0,1)$

[III] Use Lagrange multipliers to find the extrema of $f(x, y, z) = x^2 + (y - 2)^2 + (z - 3)^2$ subject to the constraint $x^2 + 2y + 2z = 22$ [5 Points] 1. Reverse the order and Evaluate the integral $\int_0^4 \int_{\sqrt{y}}^2 3\sqrt{1+x^3} \, dx dy$

2. Find the volume of the solid outside the cone $z = 6\sqrt{x^2 + y^2}$ and inside the cylinder $x^2 + y^2 = 4$ that is bounded below by the plane z = 0

3. Evaluate the integral $\iiint_Q 2z \, dv$ where Q is the solid bounded above by the sphere $x^2 + y^2 + z^2 = 9$ and below by the plane z = 0

[V] Determine whether the following series is absolutely convergent, conditionally convergent or divergent. Justify your answer. [7 Points]

1.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{2+n}}$$
 2. $\sum_{n=1}^{\infty} (-1)^n \frac{1}{1+n\sqrt{n}}$ 3. $\sum_{n=1}^{\infty} (-1)^n \frac{n^2+1}{(2n-3)^2}$

1. Find the interval and the radius of convergence of the power series

$$\sum_{n=1}^{\infty} \frac{(2x-6)^n}{n5^n}$$

2. Find a power series representation for $f(x) = e^{1+2x}$

[VI]

3. Find the **Taylor series** for $f(x) = x \sin 2x$ and use it to approximate $\int_0^{0.5} x \sin 2x \, dx$ to 3- decimal places

Good Luck 😊