MATH 206 EXERCISES (Calculus, Classic Edition by Swokowski)

16.1	1, 3, 5, 8, 9, 14, 15, 17, 21, 22			
16.2	3, 5, 6, 9, 12, 14, 16, 19, 20, 25, 26, 28, 29, 36, 37, 38, 42			
	Find the following limits, if they exist:			
	(1) $\lim_{(x,y)\to(1,2)}\frac{xy-2x-y+2}{x^2+y^2-2x-2y+5}$	(2) $\lim_{(x,y)\to(1,1)} \frac{x-y}{x^3-y}$	4 74	(3) $\lim_{(x,y)\to(0,0)} \frac{3xy}{5x^4+2y^4}$
	(4) $\lim_{(x,y)\to(0,0)}\frac{10xy}{5x^3+2y^3}$	(5) $\lim_{(x,y)\to(0,1)} \frac{x+(x,y)}{\sqrt{x^2+1}}$	$\frac{(y-1)^3}{(y-1)^2}$	(6) $\lim_{(x,y,z)\to(0,0,0)}\frac{xy+yz+zx}{x^2+y^2+z^2}$
	(7) $\lim_{(x,y)\to(0,0)}\frac{xy^3}{x^3+y^6}$	(8) $\lim_{(x,y,z)\to(0,0,0)} \frac{y}{y}$	$\frac{x^3 + x^3 \sin z^3}{x^2 + y^2 + z^2}$	(9) $\lim_{(x,y)\to(2,1)}\frac{(y-1)(x-2)^2}{(y-1)^3+(x-2)^3}$
	(10) $\lim_{(x,y)\to(0,0)}\frac{3x^2y}{x^4+y^2}$	(11) $\lim_{(x,y,z)\to(0,0,0)} \frac{1}{x}$	$\frac{xy^2}{z^2+y^2+z^2}$	(12) $\lim_{(x,y)\to(1,1)}\frac{3x^3+xy^2-3xy-y^3}{x^2-y^2}$
	(13) $\lim_{(x,y)\to(0,0)}\frac{x}{y^2} - \frac{x}{e^{y^2}}$	(14) $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2}}$	$\frac{y}{+y^2}$	
	(15) $\lim_{(x,y,z)\to(0,0,0)} f(x,y,z)$ where $f(z)$	$(x, y, z) = \begin{cases} \frac{3xyz}{x^2 + y^2 + z} \\ 0 \end{cases}$	$\frac{1}{x^2}, (x, y, z) \neq (x, y, z) =$	(0,0,0) (0,0,0)
	Discuss the continuity of the following functions on their domain			
	(1) $f(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$) (2))	$f(x,y) = \begin{cases} \frac{x}{x^4} \\ \end{array}$	$\begin{array}{l} \frac{2y}{y^2}, (x,y) \neq (0,0) \\ 0 \qquad (x,y) = (0,0) \end{array}$
	(3) $f(x, y) = \begin{cases} \frac{xy}{ x + y }, & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$)) (4)	$f(x, y, z) = \begin{cases} \frac{x}{x} \\ \frac{x}{y} \end{cases}$	$\begin{array}{l} \frac{x^{3}+y^{3}+z^{3}}{x^{2}+y^{2}+z^{2}}, (x,y,z) \neq (0,0,0) \\ 0 \qquad (x,y,z) = (0,0,0) \end{array}$
	(5) $f(x, y, z) = \begin{cases} \frac{xz - y^2}{x^2 + y^2 + z^2}, & (x, y, z) \\ 0 & (x, y, z) \end{cases}$	$\neq (0,0,0)$ = (0,0,0) (6)	$f(x, y, z) = \begin{cases} \overline{x} \\ \end{array}$	$\begin{array}{l} \frac{xzy^2}{2+y^2+z^2}, (x,y,z) \neq (0,0,0) \\ 0 \qquad (x,y,z) = (0,0,0) \end{array}$
	Discuss the continuity of the following functions on their domain			
	(1) $h(x, y) = e^{x^{2+5xy+y^2}}$	(2)	$h(x,y) = \sin y$	$\sqrt{y-4x^2}$
	(3) $h(x, y, z) = \ln(36 - 4x^2 - y^2 - y^2)$	(4)	$h(x, y, z) = \frac{1}{\sqrt{x}}$	$\frac{xz}{x^2+y^2+z^2-1}$
16.3	4, 6, 8, 12, 13, 16, 17, 21, 22, 27, 29, 32, 34, 36, 39, 42, 47			
	Use the definition to find f_x and f_y for $f(x, y) = 3x^2 - 2xy + y^2$	r the function		

16.4	2, 9, 11, 12, 16, 18, 20, 39, 41		
	Use the differential to approximate the change in the function $w = f(x, y, z) = x^2 \ln(y^2 + z^2)$ as (x, y, z) changes from (1,2,3) to (0.9,1.9,3.1)		
	Let $f(x, y, z) = \begin{cases} \frac{xy^2z}{x^4 + y^4 + z^4}, & (x, y, z) \neq (0, 0, 0) \\ 0 & (x, y, z) = (0, 0, 0) \end{cases}$		
	(a) Show that $f_x(0,0,0)$, $f_y(0,0,0)$ and $f_z(0,0,0)$ exist		
	(b) Discuss the differentiability of $f(x, y, z)$ at (0,0,0)		
16.5	2, 4, 6, 10, 12, 14, 18, 19, 22, 33, 37, 38, 41, 42		
	Let $z = f(x, y)$ be determined implicitly by $x^2 + z^2 + \cos(xyz) - 4 = 0$. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial x}$ then show		
	that $2y \frac{\partial z}{\partial x} = xyz \sin(xyz)$		
	that $2y \frac{\partial}{\partial y} - x \frac{\partial}{\partial x} - \frac{\partial}{2z - xy \sin(xyz)}$		
16.8	1, 5, 9, 11, 15, 20, 21, 23, 24, 26, 32		
16.9	1, 2, 3, 11		
17.1	1, 2, 4, 7, 10, 13, 16, 18, 19, 20, 21, 23, 25, 26, 27, 29, 31, 32, 33, 37, 38, 39, 43, 50		
	Sketch the region R bounded by the graphs of $y = x$, $y = \sqrt{x}$ and $x = 0$ then evaluate the integral		
	$\iint_R^{\text{init}} \sin y^2 dA$		
	Evaluate the double integral $\int_0^2 \int_{y/2}^1 e^{x^2} dx dy$		
17.2	2, 4, 6, 7, 11, 14, 18, 22, 24, 27, 28, 30, 31		
	Sketch the region bounded by the graphs of the equations $y = \sin x$, $y = \cos x$, $x = 0$ and $x = \frac{\pi}{2}$		
	then use a double integral to find its area.		
17.3	1, 2, 3, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 21, 23, 24		
	Use polar coordinates to evaluate the double integral $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} (x^2 + y^2)^{\frac{3}{2}} dy dx$		
17.5	2, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 23, 26, 28		
17.7	2, 3, 6, 7, 13, 18, 20, 23, 29(a), 40		
17.8	2, 3, 11, 14, 21, 25, 28, 35, 36, 39		
11.1	3, 5,7, 11, 12, 13, 16, 17, 18, 20, 22, 23, 24, 27—38, 41, 42		
11.2	2, 4, 5, 6, 8, 10, 14, 15, 18, 20, 25, 28, 30, 34, 37, 38, 39, 40, 42, 43, 45, 46		
11.3	2—10, 14, 15, 16, 18, 20, 22, 23, 24, 25, 26, 30, 31, 33, 34, 35, 39, 40, 42, 43, 45, 46, 57, 58		
11.4	2, 4, 6, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 23, 25, 27, 28, 29, 31, 32, 33, 34, 35, 38		
11.5	2-7, 9, 10, 12, 13, 14, 16, 19, 20, 21, 22, 27, 28, 29, 32, 43, 44, 45, 46		
11.6	5, 6, 7, 8, 14, 15, 19, 23, 25, 27, 30 35, 36, 41, 42, 44		
11.7	2, 4, 6, 7, 10, 13, 14, 16, 19, 22, 25, 29, 30, 32, 33, 34, 37		
11.8	2, 4, 8, 10, 13, 15, 18, 19, 21, 26		