MATH 382 - Real Analysis (1) Second Semester - 1446 H Solution of the First Exam Dr Tariq A. Alfadhel

Question (1): [8 marks]

1. Give an example of the following:

(i) A non-empty set $A \subset \mathbb{R}$ such that $\inf A = \min A$ and $\sup A \notin A$. [1]

Solution :

- A = [a, b) where $a, b \in \mathbb{R}$ and a < b.
- $A = [a, \infty)$ where $a \in \mathbb{R}$.
- (ii) Two infinite subsets $A \subset B$ and $A \sim B$. [1]

Solution :

- $A = \mathbb{N}_1$ or \mathbb{N}_2 , and $B = \mathbb{N}$.
- $A=\mathbb{N}$ and $B=\mathbb{Z}$.
- A = (0, 1) and B = (0, b), where $b \in \mathbb{R}$ and b > 1.
- 2. If A and B are two any non-empty upper bounded subsets of \mathbb{R} ,

Prove that : $\sup (A \cup B) = \max \{\sup A, \sup B\}$. [3]

Solution :

 $\begin{array}{ll} A \subset A \cup B \implies \sup A \leq \sup \left(A \cup B \right) \, . \\ B \subset A \cup B \implies \sup B \leq \sup \left(A \cup B \right) \, . \\ \text{Hence, max} \left\{ \sup A, \sup B \right\} \leq \sup \left(A \cup B \right) \quad \longrightarrow \quad (1). \\ \text{If } x \in A \cup B \implies x \in A \text{ or } x \in B \\ \implies x \leq \sup A \text{ or } x \leq \sup B \implies x \leq \max \left\{ \sup A, \sup B \right\} \\ \text{which means that max} \left\{ \sup A, \sup B \right\} \text{ is an upper bound of the set } A \cup B \\ \text{Hence, } \sup \left(A \cup B \right) \leq \max \left\{ \sup A, \sup B \right\} \quad \longrightarrow \quad (2) \\ \text{From } (1) \text{ and } (2) : \sup \left(A \cup B \right) = \max \left\{ \sup A, \sup B \right\} \, . \end{array}$

3. If A and B are denumerable subsets of \mathbb{R} , Prove that $A \times B$ is a denumerable set. [3]

Solution :

Since A is denumerable then there exists a bijection $f: A \longrightarrow \mathbb{N}$. also, since B is denumerable then there exists a bijection $g: B \longrightarrow \mathbb{N}$. Define $h: A \times B \longrightarrow \mathbb{N}$ as $: h(a, b) = 2^{f(a)}3^{g(b)}, \forall a \in A, b \in B$. Suppose $(a_1, b_1), (a_2, b_2) \in A \times B$: $h(a_1, b_1) = h(a_2, b_2) \implies 2^{f(a_1)}3^{g(b_1)} = 2^{f(a_2)}3^{g(b_2)}$ $\implies 2^{f(a_1)} = 2^{f(a_2)}$ and $3^{g(b_1)} = 3^{g(b_2)}$ $\implies f(a_1) = f(a_2)$ and $g(b_1) = g(b_2)$ $\implies a_1 = a_2$ and $b_1 = b_2$ (since f and g are both injective). $\implies (a_1, b_1) = (a_2, b_2)$. Therefore, h is an injection.

Hence, $A \times B \sim R_h \subset \mathbb{N}$.

Since R_h is countable, then $A \times B$ is countable, and being infinite it is denumerable.

Question (2): [17 marks]

1. Give an example of the following:

(i) A convergent sequence which is not monotonic. [1]

Solution :

The sequence
$$\left(\frac{(-1)^n}{n}\right)$$
.

(ii) A divergent sequence which has a Cauchy subsequence. [1]

Solution :

The sequence $(x_n) = ((-1)^n)$ is divergent,

the subsequence $(x_{2n}) = ((-1)^{2n})$ is convergent, so it is a Cauchy subsequence .

(iii) An infinite set A such that $\hat{A} = \phi$. [1]

Solution :

 $A = \mathbb{N}$ or $A = \mathbb{Z}$.

2. Prove that any convergent sequence is bounded. [2]

Solution :

Suppose the sequence (x_n) converges to x,

Let $\epsilon = 1$, then there exists $N \in \mathbb{N}$ such that :

For
$$n \ge N$$
 : $|x_n - x| < 1$
 $\implies ||x_n| - |x|| < |x_n - x| < 1$
 $\implies -1 < |x_n| - |x| < 1$
 $\implies |x_n| < 1 + |x|$
Take $K = \{|x_1|, |x_2|, \dots, |x_{N-1}|, 1 + |x|\}$
Then $K > 0$ and $|x_n| < K$, $\forall n \in \mathbb{N}$.
Therefore, the sequence (x_n) is bounded.

- 3. Discuss the convergence of the sequence $(\cos(n\pi))$. [2] **Solution :** Let $(x_n) = (\cos(n\pi))$, consider the subsequences $x_{2n} = \cos(2n\pi) = 1 \longrightarrow 1$. $x_{2n+1} = \cos((2n+1)\pi) = -1 \longrightarrow -1$. Therefore, the sequence $(\cos(n\pi))$ is divergent.
- 4. Find $\lim_{n \to \infty} \frac{2 + \sin n}{n^3 + 1}$. (Justify your answer) [2] **Solution :** Let $x_n = \frac{2 + \sin n}{n^3 + 1} = (2 + \sin n)$ $\frac{1}{n^3 + 1} = a_n \ b_n$, $\forall n \in \mathbb{N}$. $|a_n| = |2 + \sin n| \le 2 + |\sin n| \le 2 + 1 = 3$, $\forall n \in \mathbb{N}$, so (a_n) is bounded. Also, $b_n \longrightarrow 0$, Therefore $x_n = a_n \cdot b_n \longrightarrow 0$.
- 5. If (x_n) and (y_n) are Cauchy sequences, prove that (x_ny_n) is a Cauchy sequence. [3]

Solution :

Since (x_n) is Cauchy then it is bounded, so $|x_n| < K_1$, where $K_1 > 0$. Since (y_n) is Cauchy then it is bounded, so $|y_n| < K_2$, where $K_2 > 0$. Let $\epsilon > 0$ be given : Since (x_n) is Cauchy then there exists $N_1 \in \mathbb{N}$ such that : $\forall n, m \ge N_1 : |x_n - x_m| < \epsilon$. Since (y_n) is Cauchy then there exists $N_2 \in \mathbb{N}$ such that : $\forall n, m \ge N_2 : |y_n - y_m| < \epsilon$. Take $N = \max \{N_1, N_2\}$, then $\forall n, m \ge N$: $|x_n y_n - x_m y_m| = |x_n y_n - x_m y_n + x_m y_n - x_m y_m|$ $= |y_n (x_n - x_m) + x_m (y_n - y_m)|$ $\le |y_n| |x_n y - x_m| + |x_m| |y_n - y_m|$ $\le K_2 \epsilon + K_1 \epsilon = (K_1 + K_2) \epsilon = c \epsilon$, where $c = K_1 + K_2 > 0$. Therefore, $(x_n y_n)$ is a Cauchy sequence.

6. If
$$0 < a < b$$
, find $\lim_{n \to \infty} \sqrt[n]{a+b}$. [2]

Solution :

 $0 < a < b \implies a+b > 0$, Therefore, $\lim_{n \to \infty} \sqrt[n]{a+b} = \lim_{n \to \infty} (a+b)^{\frac{1}{n}} = 1$. Note that, if c > 0, then $\lim_{n \to \infty} c^{\frac{1}{n}} = 1$. (see Example 3.8, page 78).

7. If $x_1 = 1$ and $x_{n+1} = \sqrt{4x_n + 5}$, $\forall n \in \mathbb{N}$, show that (x_n) is monotonic and bounded, then find its limit. [3]

Solution :

First - Showing that (x_n) is an increasing sequence :

- (i). $x_1 = 1 \le 3 = x_2$.
- (ii). Suppose $x_{n-1} \leq x_n$.
- (iii) Proving that $x_n \leq x_{n+1}$:

 $x_{n-1} \le x_n \implies 4x_{n-1} \le 4x_n \implies 4x_{n-1} + 5 \le 4x_n + 5$

$$\implies \sqrt{4x_{n-1} + 5} \le \sqrt{4x_n + 5} \implies x_n \le x_{n+1}$$

Second - Showing that (x_n) is bounded above by 5 :

- (i). $x_1 = 1 \le 5$.
- (ii). Suppose $x_n \leq 5$.
- (iii) Proving that $x_{n+1} \leq 5$:

$$x_{n+1} = \sqrt{4x_n + 5} \le \sqrt{4(5) + 5} = \sqrt{25} = 5$$

Since (x_n) is an increasing and bounded above, then it converges to l.

Third - Finding the value of l:

$$\begin{aligned} x_{n+1} &= \sqrt{4x_n + 5} \implies l = \sqrt{4l + 5} \implies l^2 = 4l + 5 \\ \implies l^2 - 4l - 5 = 0 \implies (l - 5)(l + 1) = 0 \implies l = 5 \ , \ l = -1 \end{aligned}$$

Note that $x_n \geq 1$, $\forall n \in \mathbb{N},$ so l=-1 is excluded.

Therefore, $x_n \longrightarrow 5$.

Bonus Question: If (x_n) is an increasing sequence of positive terms which has a convergent subsequence, Prove that (x_n) is convergent. Solution :

Since (x_n) is an increasing sequence, then it is enough to show that it is bounded above.

Suppose that (x_{n_k}) is the convergent subequence, then (x_{n_k}) is bounded, $\begin{aligned} |x_{n_k}| &= x_{n_k} \leq M, \ \forall \ n_k \in \mathbb{N}, \ \text{where } M > 0 \ . \\ \forall \ k \in \mathbb{N} : \ k \leq n_k \implies x_k < x_{n_k} \ (\text{since } (x_n) \ \text{is increasing}) \ . \\ \implies x_k < x_{n_k} \leq M \ , \ \forall \ k \in \mathbb{N} \ . \end{aligned}$ Therefore, the sequence (x_n) is bounded above, Hence, it is convergent.